高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Swin Transformer的宽带无线图传语义联合编解码方法

申滨 李旋 赖雪冰 杨舒涵

申滨, 李旋, 赖雪冰, 杨舒涵. 基于Swin Transformer的宽带无线图传语义联合编解码方法[J]. 电子与信息学报, 2025, 47(8): 2665-2674. doi: 10.11999/JEIT250039
引用本文: 申滨, 李旋, 赖雪冰, 杨舒涵. 基于Swin Transformer的宽带无线图传语义联合编解码方法[J]. 电子与信息学报, 2025, 47(8): 2665-2674. doi: 10.11999/JEIT250039
SHEN Bin, LI Xuan, LAI Xuebing, YANG Shuhan. Swin Transformer-based Wideband Wireless Image Transmission Semantic Joint Encoding and Decoding Method[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2665-2674. doi: 10.11999/JEIT250039
Citation: SHEN Bin, LI Xuan, LAI Xuebing, YANG Shuhan. Swin Transformer-based Wideband Wireless Image Transmission Semantic Joint Encoding and Decoding Method[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2665-2674. doi: 10.11999/JEIT250039

基于Swin Transformer的宽带无线图传语义联合编解码方法

doi: 10.11999/JEIT250039 cstr: 32379.14.JEIT250039
基金项目: 国家自然科学基金(62371082)
详细信息
    作者简介:

    申滨:男,教授,研究方向为语义通信、机器学习、信号处理、认知无线电等

    李旋:男,硕士生,研究方向为语义通信

    赖雪冰:女,硕士生,研究方向为语义通信

    杨舒涵:女,博士生,研究方向为语义通信

    通讯作者:

    申滨 shenbin@cqupt.edu.cn

  • 中图分类号: TN927+.2

Swin Transformer-based Wideband Wireless Image Transmission Semantic Joint Encoding and Decoding Method

Funds: The National Natural Science Foundation of China (62371082)
  • 摘要: 现有的图像语义通信研究大多集中在高斯信道和瑞利衰落信道等理想化场景中。在实际的无线通信环境中,信道特性往往表现为复杂的多径衰落效应,需要复杂的收发端链路信号处理机制。针对这一现状,该文结合正交频分复用(OFDM)技术,提出一种基于Swin Transformer的宽带无线图像传输语义通信(WWIT-SC)系统,旨在解决多径衰落信道下的图像传输问题。WWIT-SC采用Swin Transformer作为语义编解码器的骨干网络,通过在语义编解码器处引入基于信道状态信息(CSI)和坐标注意力(CA)机制,使模型能够将关键的语义特征精确地映射到子载波上,并可以适应时变的信道条件。此外,在接收端设计了信道估计子网(CES)以补偿信道估计误差,从而提升CSI的精确度。实验结果表明,相较于现有最优的基于注意力机制的联合信源信道语义编码方法, WWIT-SC取得了最高9.8%的PSNR增益。
  • 图  1  WWIT-SC系统

    图  2  CA-JSCC语义编码器结构

    图  3  WWIT-SC系统模型的语义编解码器结构

    图  4  WWIT-SC模型与CA-JSCC模型在不同带宽比下性能比较

    图  5  WWIT-SC模型消融实验结果

    图  6  在Kodak 数据集上WWIT-SC模型与CA-JSCC模型的性能比较

    1  CSI辅助的CA机制

     输入:多尺度语义特征${\boldsymbol{x}}_{\mathrm{ms}} $,CSI向量$\hat {\boldsymbol{h}} $
     输出:增强多尺度语义特征$\hat {\boldsymbol{x}}_{\mathrm{ms}} $
        (1) for k=0:1:C do
        (2)   for l=0:1:H do
        (3)    ${\boldsymbol{x}}_{\mathrm{ms}}^k(l)={{\textit{0}}} $
        (4)    for i=0:1:W
        (5)     ${\boldsymbol{x}}_{\mathrm{ms}}^k(l)+={\boldsymbol{x}}_{\mathrm{ms}}^k(l,i) $
        (6)    ${\boldsymbol{z}}_k^l(l)=\dfrac{1}{W}{\boldsymbol{x}}_{\mathrm{ms}}^k(l) $
        (7)    end for
        (8)   end for
        (9)   for b=0:1:W do
        (10)    ${\boldsymbol{x}}_{\mathrm{ms}}^k (b)={{\textit{0}}}$
        (11)    for j=0:1:H do
        (12)     ${\boldsymbol{x}}_{\mathrm{ms}}^k(b)+={\boldsymbol{x}}_{\mathrm{ms}}^k(b,j) $
        (13)    end for
        (14)    ${\boldsymbol{z}}_k^b(b)=\dfrac{1}{H} {\boldsymbol{x}}_{\mathrm{ms}}^k(b)$
        (15)   end for
        (16) end for
        (17) ${\boldsymbol{f}}= \delta(F_1([{\boldsymbol{z}}^l,{\boldsymbol{z}}^b,\hat {\boldsymbol{h}}]))$
        (18) for $l= $0:1:H do
        (19)   ${\boldsymbol{g}}^l= \sigma(F_l({\boldsymbol{f}}^l))$
        (20) end for
        (21) for $b= $0:1:W do
        (22)   ${\boldsymbol{g}}^b=\sigma(F_b({\boldsymbol{f}}^l)) $
        (23) end for
        (24) for k=0:1:C do
        (25)   for i=0:1:W do
        (26)    for j=0:1:H do
        (27) ${\boldsymbol{x}}_{\mathrm{ms}}^k={\boldsymbol{x}}_{\mathrm{ms}}^k(i,j)\times {\boldsymbol{g}}_k^l(i)\times {\boldsymbol{g}}_k^b(j) $
        (28)    end for
        (29) end for
        (30) end for
    下载: 导出CSV

    表  1  参数信息

    参数 数值
    H, W, C 8, 8, 256
    h, w, c 3,32,32
    Ns, Lf 8,64
    Np, Lcp 2, 16
    r, c1, c2 32, 128, 256
    $\mu $ [0, 15]
    下载: 导出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] XIE Huiqiang, QIN Zhijin, LI G Y, et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 2663–2675. doi: 10.1109/TSP.2021.3071210.
    [3] SHANNON C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3–55. doi: 10.1145/584091.584093.
    [4] ZHANG Zhenguo, YANG Qianqian, HE Shibo, et al. Wireless transmission of images with the assistance of multi-level semantic information[C]. International Symposium on Wireless Communication Systems (ISWCS), Hangzhou, China, 2022: 1–6. doi: 10.1109/ISWCS56560.2022.9940401.
    [5] SHAO Yulin and GUNDUZ D. Semantic communications with discrete-time analog transmission: A PAPR perspective[J]. IEEE Wireless Communications Letters, 2023, 12(3): 510–514. doi: 10.1109/LWC.2022.3232946.
    [6] JANKOWSKI M, GÜNDÜZ D, and MIKOLAJCZYK K. Deep joint source-channel coding for wireless image retrieval[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 5070–5074. doi: 10.1109/ICASSP40776.2020.9054078.
    [7] 江沸菠, 彭于波, 董莉. 面向6G的深度图像语义通信模型[J]. 通信学报, 2023, 44(3): 198–208. doi: 10.11959/j.issn.1000-436x.2023050.

    JIANG Feibo, PENG Yubo, and DONG Li. Deep image semantic communication model for 6G[J]. Journal on Communications, 2023, 44(3): 198–208. doi: 10.11959/j.issn.1000-436x.2023050.
    [8] DENG Zhaokai, LI Shufeng, CAI Yujun, et al. Federated learning for image semantic communication system based on CNN and Transformer[C]. International Conference on Ubiquitous Communication (UCOM), Xi’an, China, 2023: 408–414. doi: 10.1109/Ucom59132.2023.10257622.
    [9] YANG Ke, WANG Sixian, DAI Jincheng, et al. WITT: A wireless image transmission Transformer for semantic communications[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10094735.
    [10] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [11] YANG Mingyu and KIM H S. Deep joint source-channel coding for wireless image transmission with adaptive rate control[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022: 5193–5197. doi: 10.1109/ICASSP43922.2022.9746335.
    [12] DING Mingze, LI Jiahui, MA Mengyao, et al. SNR-adaptive deep joint source-channel coding for wireless image transmission[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 1555–1559. doi: 10.1109/ICASSP39728.2021.9414037.
    [13] CHEN Weixuan, CHEN Yuhao, YANG Qianqian, et al. Deep joint source-channel coding for wireless image transmission with entropy-aware adaptive rate control[C]. IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 2239–2244. doi: 10.1109/GLOBECOM54140.2023.10437482.
    [14] XU Jialong, AI Bo, CHEN Wei, et al. Wireless image transmission using deep source channel coding with attention modules[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2315–2328. doi: 10.1109/TCSVT.2021.3082521.
    [15] YANG Mingyu, BIAN Chenghong, and KIM H S. OFDM-guided deep joint source channel coding for wireless multipath fading channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 584–599. doi: 10.1109/TCCN.2022.3151935.
    [16] WU Haotian, SHAO Yulin, MIKOLAJCZYK K, et al. Channel-adaptive wireless image transmission with OFDM[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2400–2404. doi: 10.1109/LWC.2022.3204837.
    [17] HOU Qibin, ZHOU Daquan, and FENG Jiashi. Coordinate attention for efficient mobile network design[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 13708–13717. doi: 10.1109/CVPR46437.2021.01350.
    [18] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 721.
    [19] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  179
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-04-27
  • 网络出版日期:  2025-05-20
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回