高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期Transformer和自适应傅里叶变换的动态图卷积交通流预测研究

张红 伊敏 张玺君 李扬 张鹏程

张红, 伊敏, 张玺君, 李扬, 张鹏程. 长期Transformer和自适应傅里叶变换的动态图卷积交通流预测研究[J]. 电子与信息学报, 2025, 47(7): 2249-2262. doi: 10.11999/JEIT241076
引用本文: 张红, 伊敏, 张玺君, 李扬, 张鹏程. 长期Transformer和自适应傅里叶变换的动态图卷积交通流预测研究[J]. 电子与信息学报, 2025, 47(7): 2249-2262. doi: 10.11999/JEIT241076
ZHANG Hong, YI Min, ZHANG Xijun, LI Yang, ZHANG Pengcheng. Long-term Transformer and Adaptive Fourier Transform for Dynamic Graph Convolutional Traffic Flow Prediction Study[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2249-2262. doi: 10.11999/JEIT241076
Citation: ZHANG Hong, YI Min, ZHANG Xijun, LI Yang, ZHANG Pengcheng. Long-term Transformer and Adaptive Fourier Transform for Dynamic Graph Convolutional Traffic Flow Prediction Study[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2249-2262. doi: 10.11999/JEIT241076

长期Transformer和自适应傅里叶变换的动态图卷积交通流预测研究

doi: 10.11999/JEIT241076 cstr: 32379.14.JEIT241076
基金项目: 甘肃省重点研发项目(23YFGA0063),国家自然科学基金(62363022, 61663021),甘肃省自然科学基金(22JR5RA226, 23JRRA886),甘肃省教育厅产业支撑计划(2023CYZC-35)
详细信息
    作者简介:

    张红:女,博士,副教授,研究方向为机器学习、大数据分析、智能交通

    伊敏:女,硕士生,研究方向为智能交通

    张玺君:男,博士,副教授,研究方向为大数据处理、数据挖掘分析、嵌入式系统、机器学习、智能交通

    李扬:男,硕士生,研究方向为智能交通

    张鹏程:男,硕士生,研究方向为智能交通

    通讯作者:

    张红 zhanghong@lut.edu.cn

  • 中图分类号: TN911.7

Long-term Transformer and Adaptive Fourier Transform for Dynamic Graph Convolutional Traffic Flow Prediction Study

Funds: The Key R&D Program of Gansu Province (23YFGA0063), The National Natural Science Foundation of China (62363022,61663021),The Natural Science Foundation of Gansu Province(22JR5RA226, 23JRRA886), Gansu Provincial Department of Education: Industrial Support Plan Project (2023CYZC-35)
  • 摘要: 针对交通流长期趋势性与非平稳性不易有效建模,以及交通流的隐藏动态时空特征难以捕捉的问题,该文提出一种基于长期Transformer和自适应傅里叶变换的动态图卷积交通流预测模型(ADGformer)。其中,长期门控卷积层通过掩码子序列Transformer从长历史序列中学习压缩的、上下文信息丰富的子序列表示,并利用膨胀门控卷积从子序列的时间表示中有效捕捉交通流的长期趋势特征。并设计一种动态图构造器生成动态可学习图,并利用可学习动态图卷积对节点间潜在的和时变的空间依赖关系进行建模以有效捕获交通流的动态隐藏空间特征。其次,自适应频谱块利用傅里叶变换来增强特征表示并捕获长短期的交互作用,同时通过自适应阈值处理来降低交通流的非平稳性。实验结果表明,所提ADGformer模型具有较好的预测性能。
  • 图  1  模型框架图

    图  2  Masked Sub-series Transformer的结构组成

    图  3  动态图的构造

    图  4  可学习动态图卷积

    图  5  PEMSD4和England数据集上不同模型性能比较

    图  6  PEMSD8和England数据集上与变体模型性能对比

    表  1  数据集详细信息

    数据集 节点 时间步长(min) 时间跨度(月)
    PEMSD4 307 16 969 5 2
    PEMSD8 170 17 833 5 2
    England 314 17 353 15 6
    下载: 导出CSV

    表  2  各种模型在3个数据集上的预测结果

    数据集 模型 Horizon 3 Horizon 6 Horizon 12
    MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
    PEMSD4 HA 3.567 9 6.778 7 0.080 3 3.568 9 6.779 7 0.080 4 3.570 7 6.781 5 0.080 4
    VAR 1.662 4 3.0882 0.032 7 2.125 0 4.015 6 0.043 3 2.568 7 4.834 7 0.053 6
    XGBoost 1.447 1 2.973 2 0.028 8 1.915 9 4.095 5 0.041 3 2.532 7 5.323 9 0.058 5
    LR 1.565 5 3.138 4 0.030 9 2.075 8 4.291 8 0.043 9 2.795 1 5.597 8 0.062 7
    ASTGCN 1.542 8 3.142 8 0.032 3 1.937 4 4.106 2 0.042 5 2.442 4 5.139 2 0.055 2
    GMAN 1.376 0 2.980 3 0.027 9 1.621 3 3.790 6 0.034 8 1.865 0 4.479 1 0.041 6
    DCRNN 1.429 5 2.880 5 0.028 1 1.853 1 3.873 1 0.039 1 2.366 6 4.899 1 0.052 7
    MTGNN 1.348 5 2.851 7 0.026 8 1.645 4 3.752 3 0.034 8 1.930 6 4.497 2 0.042 6
    GWNet 1.326 6 2.815 9 0.026 6 1.645 6 3.764 0 0.035 6 1.955 0 4.556 0 0.044 6
    ADGformer 1.303 8 2.728 6 0.025 6 1.606 0 3.684 3 0.032 7 1.862 9 4.367 6 0.041 1
    PEMSD8 HA 2.811 9 5.676 3 0.063 1 2.809 9 5.673 0 0.063 0 2.804 7 5.664 7 0.062 7
    VAR 1.132 7 2.071 2 0.022 4 1.716 6 3.305 3 0.035 6 2.166 1 4.250 0 0.046 7
    XGBoost 1.199 7 2.569 8 0.024 1 1.560 4 3.503 0 0.033 8 2.000 8 4.484 0 0.045 8
    LR 1.271 1 2.633 5 0.024 4 1.661 4 3.560 6 0.033 5 2.168 1 4.579 4 0.045 9
    ASTGCN 1.379 4 2.993 4 0.029 7 1.644 6 3.619 4 0.035 8 1.994 5 4.288 0 0.043 6
    GMAN 1.137 4 2.675 2 0.023 4 1.323 7 3.395 0 0.029 2 1.512 0 4.0524 0.035 5
    DCRNN 1.195 7 2.467 9 0.023 6 1.534 7 3.303 4 0.032 5 1.905 1 4.145 1 0.042 7
    MTGNN 1.140 2 2.573 8 0.023 4 1.397 7 3.491 3 0.031 4 1.632 3 4.249 0 0.039 4
    GWNet 1.118 4 0.023 3 2.553 3 1.384 9 3.532 7 0.031 9 1.604 3 4.242 4 0.039 1
    ADGformer 1.046 9 2.451 6 0.019 1 1.318 5 3.282 0 0.028 5 1.505 8 4.051 4 0.035 3
    England HA 7.047 3 12.213 3 0.099 3 7.044 1 12.210 6 0.099 3 7.034 1 12.200 5 0.099 2
    VAR 3.213 5 5.725 4 0.041 9 4.101 9 7.576 4 0.056 3 4.837 2 8.948 7 0.069 3
    XGBoost 3.192 4 6.717 7 0.044 0 4.298 8 8.667 3 0.063 1 5.523 7 10.475 6 0.082 9
    LR 3.773 2 7.433 1 0.050 5 5.281 6 9.704 5 0.073 7 6.566 4 11.599 1 0.094 3
    ASTGCN 3.214 1 6.540 4 0.043 9 3.926 2 7.917 7 0.055 6 4.601 0 9.079 3 0.066 4
    GMAN 2.611 7 6.287 4 0.036 2 2.955 8 7.333 9 0.043 1 3.306 6 8.140 4 0.049 3
    DCRNN 2.836 3 6.106 2 0.038 1 3.491 3 7.447 3 0.048 7 4.281 3 8.721 7 0.061 0
    MTGNN 2.535 2 5.978 9 0.035 4 2.921 6 7.088 9 0.043 0 3.335 9 7.993 6 0.050 7
    GWNet 2.521 6 5.961 0 0.034 8 2.961 0 7.128 4 0.043 6 3.446 1 8.068 7 0.051 3
    ADGformer 2.519 0 5.943 5 0.034 8 2.907 9 7.045 0 0.042 8 3.243 4 7.798 8 0.048 8
    下载: 导出CSV

    表  3  ADGformer模型与变体模型在不同时间步长的预测性能

    数据集 模型 Horizon 3 Horizon 6 Horizon 12
    MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
    PEMSD4 NMS-Trans 1.330 3 2.810 3 0.026 2 1.643 3 3.727 1 0.035 1 1.934 3 4.493 5 0.043 2
    NLGConv 1.353 8 2.828 6 0.027 6 1.656 0 3.784 3 0.036 7 1.962 9 4.567 6 0.044 1
    NASB 1.303 2 2.772 3 0.025 8 1.611 1 3.694 7 0.033 9 1.880 2 4.399 0 0.041 9
    NDGConv 1.345 2 2.828 4 0.026 4 1.684 3 3.782 7 0.035 7 2.016 0 4.625 8 0.045 1
    ADGformer 1.303 8 2.728 6 0.025 6 1.606 0 3.684 3 0.032 7 1.862 9 4.367 6 0.041 1
    PEMSD8 NMS-Trans 1.103 9 2.483 2 0.021 9 1.360 0 3.332 8 0.029 1 1.607 1 4.076 5 0.036 3
    NLGConv 1.111 4 2.500 5 0.022 2 1.389 6 3.447 0 0.030 4 1.666 7 4.263 7 0.038 5
    NASB 1.121 8 2.566 9 0.022 9 1.398 2 3.533 4 0.031 0 1.631 3 4.232 8 0.037 9
    NDGConv 1.149 5 2.563 2 0.023 9 1.442 5 3.497 0 0.031 9 1.724 6 4.263 1 0.039 7
    ADGformer 1.046 9 2.451 6 0.019 1 1.318 5 3.282 0 0.028 5 1.505 8 4.051 4 0.035 3
    England NMS-Trans 2.528 2 5.994 9 0.035 3 2.889 0 7.109 5 0.043 3 3.288 5 7.900 6 0.050 6
    NLGConv 2.513 2 6.271 1 0.037 3 2.988 9 7.178 7 0.044 2 3.297 7 7.993 7 0.059 9
    NASB 2.524 7 5.984 7 0.035 3 2.911 9 7.092 5 0.044 3 3.267 8 7.917 2 0.050 3
    NDGConv 2.555 7 6.088 4 0.036 2 2.957 3 7.258 3 0.044 2 3.339 8 7.997 9 0.051 3
    ADGformer 2.519 0 5.943 5 0.034 8 2.907 9 7.045 0 0.042 8 3.243 4 7.798 8 0.048 8
    下载: 导出CSV
  • [1] CINI N and AYDIN Z. A deep ensemble approach for long-term traffic flow prediction[J]. Arabian Journal for Science and Engineering, 2024, 49(9): 12377–12392. doi: 10.1007/s13369-023-08672-1.
    [2] SATTARZADEH A R, KUTADINATA R J, PATHIRANA P N, et al. A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction[J]. Transportmetrica A: Transport Science, 2025, 21(1): 2236724. doi: 10.1080/23249935.2023.2236724.
    [3] CHENG Zeyang, LU Jian, ZHOU Huajian, et al. Short-term traffic flow prediction: An integrated method of econometrics and hybrid deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5231–5244. doi: 10.1109/TITS.2021.3052796.
    [4] HE Silu, LUO Qinyao, DU Ronghua, et al. STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph[J]. Physica A: Statistical Mechanics and its Applications, 2023, 623: 128913. doi: 10.1016/j.physa.2023.128913.
    [5] ZHU Hailong, XIE Yawen, HE Wei, et al. A novel traffic flow forecasting method based on RNN‐GCN and BRB[J]. Journal of Advanced Transportation, 2020, 2020: 1–11. doi: 10.1155/2020/7586154.
    [6] SUN Lijun, LIU Mingzhi, LIU Guanfeng, et al. FD-TGCN: Fast and dynamic temporal graph convolution network for traffic flow prediction[J]. Information Fusion, 2024, 106: 102291. doi: 10.1016/j.inffus.2024.102291.
    [7] LIU Yutian, FENG Tao, RASOULI S, et al. ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction[J]. Neurocomputing, 2024, 601: 128175. doi: 10.1016/j.neucom.2024.128175.
    [8] BING Qichun, ZHAO Panpan, REN Canzheng, et al. Short-Term traffic flow forecasting method based on secondary decomposition and conventional neural network–transformer[J]. Sustainability, 2024, 16(11): 4567. doi: 10.3390/su16114567.
    [9] WANG Runjie, SHI Wenzhong, LIU Xianglei, et al. An adaptive cutoff frequency selection approach for fast fourier transform method and its application into short-term traffic flow forecasting[J]. ISPRS International Journal of Geo-Information, 2020, 9(12): 731. doi: 10.3390/ijgi9120731.
    [10] LI He, LI Xuejiao, SU Liangcai, et al. Deep spatio-temporal adaptive 3D convolutional neural networks for traffic flow prediction[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(2): 1–21. doi: 10.1145/3510829.
    [11] CHEN Jian, WANG Wei, YU Keping, et al. Node connection strength matrix-based graph convolution network for traffic flow prediction[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12063–12074. doi: 10.1109/TVT.2023.3265300.
    [12] ZHANG Hong, CHEN Linlong, CAO Jie, et al. Traffic flow forecasting of graph convolutional network based on spatio-temporal attention mechanism[J]. International Journal of Automotive Technology, 2023, 24(4): 1013–1023. doi: 10.1007/s12239-023-0083-9.
    [13] LING Jiahao, LAN Yuanchun, HUANG Xiaohui, et al. A multi-scale residual graph convolution network with hierarchical attention for predicting traffic flow in urban mobility[J]. Complex & Intelligent Systems, 2024, 10(3): 3305–3317. doi: 10.1007/s40747-023-01324-9.
    [14] WANG Xinqiang, SHANG Yihui, and LI Guoyan. DTM-GCN: A traffic flow prediction model based on dynamic graph convolutional network[J]. Multimedia Tools and Applications, 2024, 83(41): 89545–89561. doi: 10.1007/s11042-024-18348-z.
    [15] LI Zuhua, WEI Siwei, WANG Haibo, et al. ADDGCN: A novel approach with down-sampling dynamic graph convolution and multi-head attention for traffic flow forecasting[J]. Applied Sciences, 2024, 14(10): 4130. doi: 10.3390/app14104130.
    [16] 邓涵优, 陈红梅, 肖清, 等. 基于多头注意力动态图卷积网络的交通流预测[J]. 太原理工大学学报, 2024, 55(1): 172–183. doi: 10.16355/j.tyut.1007-9432.2023BD004.

    DENG Hanyou, CHEN Hongmei, XIAO Qing, et al. Dynamic graph convolution network with multi-head attention for traffic flow prediction[J]. Journal of Taiyuan University of Technology, 2024, 55(1): 172–183. doi: 10.16355/j.tyut.1007-9432.2023BD004.
    [17] PENG Hao, DU Bowen, and LIU Mingsheng, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J]. Information Sciences, 2021, 578: 401–416. doi: 1016/j.ins.2021.07.007. doi: 10.1016/j.ins.2021.07.007.
    [18] 唐晨嘉, 曾伟, 赵振兴. 基于自适应动态图卷积循环网络的交通流预测[J]. 武汉理工大学学报(交通科学与工程版), 2024, 48(3): 415–420. doi: 10.3963/j.issn.2095-3844.2024.03.002.

    TANG Chenjia, ZENG Wei, and ZHAO Zhenxing. Traffic flow prediction based on adaptive dynamic graph convolutional recurrent network[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2024, 48(3): 415–420. doi: 10.3963/j.issn.2095-3844.2024.03.002.
    [19] 蒋挺, 杨柳, 刘亚林, 等. 基于分解动态时空分解框架预测交通流量[J]. 科学技术与工程, 2025, 25(7): 3007–3017. doi: 10.12404/j.issn.1671-1815.2307832.

    JIANG Ting, YANG Liu, LIU Yalin, et al. Traffic flow prediction based on the dynamic spatial-temporal decomposition framework[J]. Science Technology and Engineering, 2025, 25(7): 3007–3017. doi: 10.12404/j.issn.1671-1815.2307832.
    [20] WEI Siwei, YANG Yang, LIU Donghua, et al. Transformer-Based spatiotemporal graph diffusion convolution network for traffic flow forecasting[J]. Electronics, 2024, 13(16): 3151. doi: 10.3390/electronics13163151.
    [21] YANG Hanqing, WEI Sen, and WANG Yuanqing. STFEformer: Spatial–Temporal fusion embedding transformer for traffic flow prediction[J]. Applied Sciences, 2024, 14(10): 4325. doi: 10.3390/app14104325.
    [22] ZHU Changfeng, YU Chunxiao, and HUO Jiuyuan. Research on spatio-temporal network prediction model of parallel–series traffic flow based on transformer and GCAT[J]. Physica A: Statistical Mechanics and its Applications, 2023, 610: 128414. doi: 10.1016/j.physa.2022.128414.
    [23] REN Qianqian, LI Yang, and LIU Yong. Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting[J]. Expert Systems with Applications, 2023, 227: 120203. doi: 10.1016/j.eswa.2023.120203.
    [24] ZHANG Chen, WU Yue, SHEN Ya, et al. Adaptive graph convolutional recurrent network with transformer and whale optimization algorithm for traffic flow prediction[J]. Mathematics, 2024, 12(10): 1493. doi: 10.3390/math12101493.
    [25] ZANG Linlin, WANG Tao, ZHANG Bo, et al. Transfer learning-based nonstationary traffic flow prediction using AdaRNN and DCORAL[J]. Expert Systems with Applications, 2024, 258: 125143. doi: 10.1016/j.eswa.2024.125143.
    [26] YIN Lisheng, LIU Pan, WU Yangyang, et al. ST-VGBiGRU: A hybrid model for traffic flow prediction with spatio-temporal multimodality[J]. IEEE Access, 2023, 11: 54968–54985. doi: 10.1109/ACCESS.2023.3282323.
    [27] HUANG Xiaoting, MA Changxi, ZHAO Yongpeng, et al. A hybrid model of neural network with VMD–CNN–GRU for traffic flow prediction[J]. International Journal of Modern Physics C, 2023, 34(12): 2350159. doi: 10.1142/S0129183123501590.
    [28] SUN Haoran, WEI Yanling, HUANG Xueliang, et al. Global spatio‐temporal dynamic capturing network‐based traffic flow prediction[J]. IET Intelligent Transport Systems, 2023, 17(6): 1220–1228. doi: 10.1049/itr2.12371.
    [29] LI Yaguang and SHAHABI C. A brief overview of machine learning methods for short-term traffic forecasting and future directions[J]. SIGSPATIAL Special, 2018, 10(1): 3–9. doi: 10.1145/3231541.3231544.
    [30] CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
    [31] LAI Qiang and CHEN Peng. LEISN: A long explicit–implicit spatio-temporal network for traffic flow forecasting[J]. Expert Systems with Applications, 2024, 245: 123139. doi: 10.1016/j.eswa.2024.123139.
    [32] GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]. Proceedings of the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, USA, 2019: 922–929. doi: 10.1609/aaai.v33i01.3301922.
    [33] ZHENG Chuanpan, FAN Xiaoliang, WANG Cheng, et al. GMAN: A graph multi-attention network for traffic prediction[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 1234–1241. doi: 10.1609/aaai.v34i01.5477.
    [34] LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–16. doi: 10.48550/arXiv.1707.01926.
    [35] WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, California, USA, 2020: 753–763. doi: 10.1145/3394486.3403118.
    [36] TIAN Chenyu and CHAN W K. Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549–561. doi: 10.1049/itr2.12044.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  200
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-05
  • 修回日期:  2025-05-25
  • 网络出版日期:  2025-06-07
  • 刊出日期:  2025-07-22

目录

    /

    返回文章
    返回