高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩散生成式数据赋能ECG病理信号分类研究

葛贝宁 陈诺 金鹏 苏新 陆晓春

葛贝宁, 陈诺, 金鹏, 苏新, 陆晓春. 扩散生成式数据赋能ECG病理信号分类研究[J]. 电子与信息学报. doi: 10.11999/JEIT241003
引用本文: 葛贝宁, 陈诺, 金鹏, 苏新, 陆晓春. 扩散生成式数据赋能ECG病理信号分类研究[J]. 电子与信息学报. doi: 10.11999/JEIT241003
GE Beining, CHEN Nuo, JIN Peng, SU Xin, LU Xiaochun. Research on ECG Pathological Signal Classification Empowered by Diffusion Generative Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241003
Citation: GE Beining, CHEN Nuo, JIN Peng, SU Xin, LU Xiaochun. Research on ECG Pathological Signal Classification Empowered by Diffusion Generative Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241003

扩散生成式数据赋能ECG病理信号分类研究

doi: 10.11999/JEIT241003 cstr: 32379.14.JEIT250404
基金项目: 国家自然科学基金(62371181),常州市政策引导类计划(CZ20230029)
详细信息
    作者简介:

    葛贝宁:男,硕士生,研究方向为智慧医疗、边缘计算、物联网技术与应用等

    陈诺:男,本科生,研究方向为智慧医疗、边缘计算、物联网技术与应用等

    金鹏:男,硕士生,研究方向为智慧医疗、边缘计算、物联网技术与应用等

    苏新:男,教授,研究方向为智慧医疗、边缘计算、物联网技术与应用等

    陆晓春:男,讲师,研究方向为智慧医疗、边缘计算、物联网技术与应用等

    通讯作者:

    陆晓春 Lu213022@163.com

  • 中图分类号: TN929.52

Research on ECG Pathological Signal Classification Empowered by Diffusion Generative Data

Funds: The National Natural Science Foundation of China (62371181), Changzhou Science and Technology International Cooperation Program (CZ20230029)
  • 摘要: 心电图(ECG)是衡量一个人身体健康的重要指标,由于ECG图像组成复杂,特征较多,人眼识别往往会出现误差,因此该文提出一种基于数据生成的ECG病理信号分类算法。首先,扩散生成网络通过向真实的ECG信号添加噪声,逐步将其转换为接近纯噪声的分布,从而便于模型的处理。为了提高生成速度和减少内存占用,该文进一步提出了一种基于知识蒸馏的蒸馏-扩散生成 (KD-DGN)模型,该模型在内存和生成效率上优于传统的DGN。该文还讨论了KD-DGN的内存占用、生成效率及ECG数据的准确性,探讨了轻量化处理后生成的数据特征。最后,通过比较原始MIT-BIH数据集与扩展数据集(MIT-BIH-PLUS)在分类模型中的效果,实验结果表明,卷积网络能够从DGN生成的扩展数据集中获取更多的特征信息从而提升ECG病理信号的识别效果。
  • 图  1  ECG 组成图

    图  2  扩散生成模型前向加噪过程

    图  3  U-Net 架构反向传播解码过程

    图  4  教师-学生模型对抗蒸馏算法示意图

    图  5  不同内存分配下峰值内存占比与运行耗时示意图

    图  6  不同内存分配下峰值内存占比、运行耗时及信噪比柱状图

    图  7  使用CNN, LSTM, ResNet50以及AlexNet进行ECG分类的混淆矩阵以及类别Ab和Rb

    图  8  CNN, LSTM, ResNet50以及AlexNet进行ECG分类任务的训练LOSS曲线

    图  9  使用 DGN,GAN 和 KD-DGN 进行数据生成后使用 CNN,LSTM,ResNet50 以及 AlexNet 分类得到的混淆矩阵

    图  10  DGN, GAN和KD-DGN生成的Ab, Rb, Nb, Vb以及Lb各一张ECG图像

    图  11  使用CNN, LSTM, ResNet50以及AlexNet对DGN, GAN和KD-DGN生成的数据进行ECG分类任务的训练LOSS曲线

  • [1] 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 临床心血管病杂志, 2024, 40(8): 599–616. doi: 10.13201/j.issn.1001-1439.2024.08.002.

    LIU Mingbo, HE Xinye, YANG Xiaohong, et al. Interpretation of report on cardiovascular health and diseases in China 2023[J]. Journal of Clinical Cardiology, 2024, 40(8): 599–616. doi: 10.13201/j.issn.1001-1439.2024.08.002.
    [2] PENG Huyang, CHANG Xiaohan, YAO Zhenjie, et al. A deep learning framework for ECG denoising and classification[J]. Biomedical Signal Processing and Control, 2024, 94: 106441. doi: 10.1016/j.bspc.2024.106441.
    [3] LI Chengjun, WU Yacen, LIN Haijun, et al. ECG denoising method based on an improved VMD algorithm[J]. IEEE Sensors Journal, 2022, 22(23): 22725–22733. doi: 10.1109/JSEN.2022.3214239.
    [4] MERDJANOVSKA E and RASHKOVSKA A. Comprehensive survey of computational ECG analysis: Databases, methods and applications[J]. Expert Systems with Applications, 2022, 203: 117206. doi: 10.1016/j.dcan.2025.04.001.
    [5] REN Jianlin, ZHANG Ran, CAO Xiaodong, et al. Experimental evaluation of ECG signal denoising methods based on HRV indices and their application in indoor thermal comfort study under different temperatures[J]. Energy and Buildings, 2024, 303: 113797. doi: 10.1016/j.enbuild.2023.113797.
    [6] MA'SUM M A, JATMIKO W, and SUHARTANTO H. Enhanced Tele ECG system using Hadoop framework to deal with big data processing[C]. Proceedings of 2016 International Workshop on Big Data and Information Security, Jakarta, Indonesia, 2016: 121–126. doi: 10.1109/IWBIS.2016.7872900.
    [7] GUPTA V and MITTAL M. KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation[J]. Procedia Computer Science, 2018, 125: 18–24. doi: 10.1016/j.procs.2017.12.005.
    [8] JING Enbiao, ZHANG Haiyang, LI Zhigang, et al. ECG heartbeat classification based on an improved ResNet‐18 model[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 6649970. doi: 10.1155/2021/6649970.
    [9] KUMAR M A and CHAKRAPANI A. Classification of ECG signal using FFT based improved Alexnet classifier[J]. PLoS One, 2022, 17(9): e0274225. doi: 10.1371/journal.pone.0274225.
    [10] KAMOZAWA H, MUROGA S, and TANAKA M. A detection method of atrial fibrillation from 24‐hour Holter‐ECG using CNN[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(4): 577–582. doi: 10.1002/tee.23756.
    [11] 邵虹, 荆一烜, 崔文成. 基于扩散生成对抗网络的核磁共振图像与计算机断层扫描图像跨模态转换[J]. 生物医学工程学杂志, 2025, 42(3): 575–584. doi: 10.7507/1001-5515.202404056.

    SHAO Hong, JING Yixuan, and CUI Wencheng. Cross modal translation of magnetic resonance imaging and computed tomography images based on diffusion generative adversarial networks[J]. Journal of Biomedical Engineering, 2025, 42(3): 575–584. doi: 10.7507/1001-5515.202404056.
    [12] SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: A review of theory and applications[J]. IEEE Access, 2021, 9: 82031–82057. doi: 10.1109/ACCESS.2021.3086020.
    [13] MERDJANOVSKA E and RASHKOVSKA A. Comprehensive survey of computational ECG analysis: Databases, methods and applications[J]. Expert Systems with Applications, 2022, 203: 117206. doi: 10.1016/j.eswa.2022.117206. (查阅网上资料,本条文献与第4条文献重复,请确认).
    [14] WEN Yihan, MA Xianping, ZHANG Xiaokang, et al. GCD-DDPM: A generative change detection model based on difference-feature-guided DDPM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5404416. doi: 10.1109/TGRS.2024.3381752.
    [15] SHI Yongyi, XIA Wenjun, WANG Ge, et al. Blind CT image quality assessment using DDPM-derived content and transformer-based evaluator[J]. IEEE Transactions on Medical Imaging, 2024, 43(10): 3559–3569. doi: 10.1109/TMI.2024.3418652.
    [16] BECHINIA H, BENMERZOUG D, and KHLIFA N. Approach based lightweight custom convolutional neural network and fine-tuned MobileNet-V2 for ECG arrhythmia signals classification[J]. IEEE Access, 2024, 12: 40827–40841. doi: 10.1109/ACCESS.2024.3378730.
    [17] SAADATNEJAD S, OVEISI M, and HASHEMI M. LSTM-based ECG classification for continuous monitoring on personal wearable devices[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 515–523. doi: 10.1109/JBHI.2019.2911367.
    [18] APANDI Z F M, IKEURA R, and HAYAKAWA S. Arrhythmia detection using MIT-BIH dataset: A review[C]. Proceedings of 2018 International Conference on Computational Approach in Smart Systems Design and Applications, Kuching, Malaysia, 2018: 1–5. doi: 10.1109/ICASSDA.2018.8477620.
  • 加载中
图(11)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  142
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-12
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回