高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能表面辅助的联合空间和码索引调制通信系统

陈平平 张云馨 杜伟庆

陈平平, 张云馨, 杜伟庆. 可重构智能表面辅助的联合空间和码索引调制通信系统[J]. 电子与信息学报, 2025, 47(2): 439-448. doi: 10.11999/JEIT240987
引用本文: 陈平平, 张云馨, 杜伟庆. 可重构智能表面辅助的联合空间和码索引调制通信系统[J]. 电子与信息学报, 2025, 47(2): 439-448. doi: 10.11999/JEIT240987
CHEN Pingping, ZHANG Yunxin, DU Weiqing. Reconfigurable Intelligent Surface-Aided Joint Spatial and Code Index Modulation Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 439-448. doi: 10.11999/JEIT240987
Citation: CHEN Pingping, ZHANG Yunxin, DU Weiqing. Reconfigurable Intelligent Surface-Aided Joint Spatial and Code Index Modulation Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 439-448. doi: 10.11999/JEIT240987

可重构智能表面辅助的联合空间和码索引调制通信系统

doi: 10.11999/JEIT240987 cstr: 32379.14.JEIT240987
基金项目: 国家自然科学基金(62171135)
详细信息
    作者简介:

    陈平平:男,教授,研究方向为无线通信、极化码信道编译码、网络编码、多用户接入

    张云馨:女,硕士生,研究方向为无线通信

    杜伟庆:男,助理研究员,研究方向为无线通信、流媒体传输协议、视频编解码

    通讯作者:

    杜伟庆 dwq_qz@fzu.edu.cn

  • 中图分类号: TN914.4

Reconfigurable Intelligent Surface-Aided Joint Spatial and Code Index Modulation Communication System

Funds: The National Natural Science Foundation of China (62171135)
  • 摘要: 传统的可重构智能表面辅助的空间调制(RIS-SM)通信系统利用接收天线的索引来传输额外的信息比特,因此该系统数据传输速率的提升是以增加接收机天线数为代价。为了提高RIS-SM系统的数据传输速率和能量效率,该文提出可重构智能表面辅助的联合空间和码索引调制(RIS-JSCIM)通信系统。该系统利用多元正交幅度调制(M-QAM)符号、空域的接收天线索引和码索引传输信息比特。天线索引和码索引传输的信息比特不需要消耗能量,因此RIS-JSCIM系统能够获得良好的能量效率。该文对比了RIS-JSCIM系统和其他系统的能量效率、系统复杂度和误码率性能。对比结果表明,所提RIS-JSCIM系统以增加一定复杂度为代价,能够获得相比于其他系统更优异的能量效率和误码率性能。
  • 图  1  RIS-JSCIM系统的发射机结构

    图  2  RIS-JSCIM系统的接收机结构

    图  3  本文所提RIS-JSCIM系统在不同码索引比特数和M-QAM调制比特数下的误码率性能

    图  4  本文所提RIS-JSCIM系统MLD算法和GD算法的误码率性能对比

    图  5  所提RIS-JSCIM系统和其他系统的误码率性能对比

    图  6  本文所提RIS-JSCIM系统和RIS-CIM系统在不同RIS单元数下的误码率性能

    图  7  本文所提RIS-JSCIM系统和RIS-SM系统在不同RIS单元数下的误码率性能

    表  1  本文所提RIS-JSCIM与其他方案的主要差异对比

    系统天线索引码索引RIS
    RIS-JSCIM
    GCIM-SM [10]××
    RIS-AP [14]××
    RIS-SM [15]×
    RIS-CIM [20]×
    下载: 导出CSV

    表  2  本文所提RIS-JSCIM与RIS-SM, RIS-CIM方案的能量效率对比(%)

    系统${N_{\text{R}}} = 4,_{}^{}L = 4$${N_{\text{R}}} = 8,_{}^{}L = 4$${N_{\text{R}}} = 16,_{}^{}L = 4$${N_{\text{R}}} = 4,_{}^{}L = 8$${N_{\text{R}}} = 4,_{}^{}L = 16$
    RIS-JSCIM7578808083
    RIS-SM [15]5060675050
    RIS-CIM [20]6767677580
    下载: 导出CSV

    表  3  本文所提RIS-JSCIM的两种检测方案与GCIM-SM, RIS-CIM方案的复杂度对比

    系统${N_{\text{R}}} = 2,L = 4,M = 4$${N_{\text{R}}} = 2,L = 8,M = 8$${N_{\text{R}}} = 2,L = 16,M = 4$
    RIS-JSCIM (GD)5128961280
    RIS-JSCIM (MLD)825665600131136
    GCIM-SM [10]5128961280
    RIS-CIM [20]4488621216
    下载: 导出CSV
  • [1] 工业和信息化部, 国家发展改革委, 财政部, 等. 信息通信行业绿色低碳发展行动计划(2022–2025年)[R]. 工信部联通信〔2022〕103号, 2022.

    Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Finance of the People’s Republic of China, et al. Green and low-carbon development action plan for the information and communications industry (2022–2025)[R]. 2022.
    [2] MAO Tianqi, WANG Qi, WANG Zhaocheng, et al. Novel index modulation techniques: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 315–348. doi: 10.1109/COMST.2018.2858567.
    [3] BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528.
    [4] MESLEH R, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228–2241. doi: 10.1109/TVT.2007.912136.
    [5] WEI R Y, CHANG C W, and CHENG Yuanfu. Temporal permutations in distinct accumulated blocks of space-time block-coded spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19240–19251. doi: 10.1109/TVT.2024.3446318.
    [6] ZHU Feifei, HAI Han, PENG Yuyang, et al. Extended variable active antenna generalized spatial modulation[J]. IEEE Wireless Communications Letters, 2024, 13(2): 265–269. doi: 10.1109/LWC.2023.3322005.
    [7] KADDOUM G, AHMED M F A, and NIJSURE Y. Code index modulation: A high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19(2): 175–178. doi: 10.1109/LCOMM.2014.2385054.
    [8] KADDOUM G, NIJSURE Y, and TRAN H. Generalized code index modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7000–7009. doi: 10.1109/TVT.2015.2498040.
    [9] AYDIN E, COGEN F, and BASAR E. Code index modulation aided quadrature spatial modulation for high-rate MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10257–10261. doi: 10.1109/TVT.2019.2928378.
    [10] COGEN F, AYDIN E, KABAOGLU N, et al. Generalized code index modulation and spatial modulation for high rate and energy-efficient mimo systems on rayleigh block-fading channel[J]. IEEE Systems Journal, 2021, 15(1): 538–545. doi: 10.1109/JSYST.2020.2993704.
    [11] 李斌, 刘文帅, 谢万城, 等. 智能超表面赋能移动边缘计算部分任务卸载策略[J]. 电子与信息学报, 2022, 44(7): 2309–2316. doi: 10.11999/JEIT211595.

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Partial computation offloading for double-RIS assisted multi-user mobile edge computing networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2309–2316. doi: 10.11999/JEIT211595.
    [12] BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
    [13] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
    [14] BASAR E. Transmission through large intelligent surfaces: A new frontier in wireless communications[C]. 2019 European Conference on Networks and Communications, Valencia, Spain, 2019: 112–117. doi: 10.1109/EuCNC.2019.8801961.
    [15] BASAR E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187–3196. doi: 10.1109/TCOMM.2020.2971486.
    [16] ASMORO K and SHIN S Y. RIS grouping based index modulation for 6G telecommunications[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2410–2414. doi: 10.1109/LWC.2022.3205038.
    [17] LI Qiang, WEN Miaowen, LI Jun, et al. Interplay between reconfigurable intelligent surfaces and spatial modulation: New application paradigms[J]. IEEE Wireless Communications, 2023, 30(1): 126–133. doi: 10.1109/MWC.011.2100143.
    [18] DINAN M H, DI RENZO M, and FLANAGAN M F. RIS-assisted receive quadrature spatial modulation with low-complexity greedy detection[J]. IEEE Transactions on Communications, 2023, 71(11): 6546–6560. doi: 10.1109/TCOMM.2023.3303957.
    [19] LI Can, CAI Xiangming, KANG Peng, et al. Exploiting activation mode index for reconfigurable intelligent surface-aided spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19809–19814. doi: 10.1109/TVT.2024.3433609.
    [20] COGEN F, OZDEN B A, AYDIN E, et al. Reconfigurable intelligent surface-empowered code index modulation for high-rate SISO systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(5): 1856–1866. doi: 10.1109/TCCN.2024.3384495.
    [21] JIN Xiaoping, BIAN Lina, LI Zhengquan, et al. A novel RIS-aided code index modulation scheme with low-complexity detection[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 14279–14288. doi: 10.1109/TVT.2023.3281636.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  141
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-11
  • 网络出版日期:  2025-02-25
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回