高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能超表面辅助的非地面网络安全传输与轨迹优化

徐可馨 隆克平 陆阳 张海君

徐可馨, 隆克平, 陆阳, 张海君. 可重构智能超表面辅助的非地面网络安全传输与轨迹优化[J]. 电子与信息学报, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
引用本文: 徐可馨, 隆克平, 陆阳, 张海君. 可重构智能超表面辅助的非地面网络安全传输与轨迹优化[J]. 电子与信息学报, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
XU Kexin, LONG Keping, LU Yang, ZHANG Haijun. Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
Citation: XU Kexin, LONG Keping, LU Yang, ZHANG Haijun. Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981

可重构智能超表面辅助的非地面网络安全传输与轨迹优化

doi: 10.11999/JEIT240981 cstr: 32379.14.JEIT240981
基金项目: 国家自然科学基金(U2441227, U22B2003),国防基础科研计划(JCKY2022110C010),中央高校基本科研业务费专项资金(FRF-TP-22-002C2),通信抗干扰全国重点实验室开放课题(IFN20230201)
详细信息
    作者简介:

    徐可馨:女,博士生,研究方向为非地面网络、6G移动通信以及人工智能技术

    隆克平:男,教授,研究方向为6G移动通信、光无线通信

    陆阳:男,高级工程师(教授级),研究方向为电力通信技术

    张海君:男,教授,研究方向为6G移动通信、数字孪生、通感一体化技术以及卫星通信

    通讯作者:

    隆克平 longkeping@ustb.edu.cn

  • 中图分类号: TN929.5

Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks

Funds: The National Natural Science Foundation of China (U2441227, U22B2003), The Defense Industrial Technology Development Program (JCKY2022110C010), The Fundamental Research Funds for the Central Universities (FRF-TP-22-002C2), The National Key Laboratory of Wireless Communications Foundation (IFN20230201)
  • 摘要: 由于卫星与地面用户之间的直连受限于覆盖范围和链路质量以及非地面网络存在窃听威胁等问题,该文考虑一个无人机中继的非地面网络安全传输系统,引入可重构智能超表面(RIS),提高合法用户信号质量。同时为了兼顾系统高传输速率和高安全需求,该文设计卫星到无人机的传输速率与地面合法用户的安全速率的加权和作为系统效用,并以此作为优化目标,进而提出一种基于双层双延迟深度确定性策略梯度(TTD3)的联合卫星与无人机波束成形、RIS相移矩阵以及无人机轨迹优化方法,通过采用双层深度强化学习结构解耦波束成形和轨迹优化两个子问题,实现系统效用最大化。仿真结果验证了所提方法在动态非地面网络环境下的有效性,同时在高安全需求下,通过对比不同算法、不同配置方案以及不同RIS元件数量下的仿真结果,证明了该文所提方法能够提升系统安全传输性能。
  • 图  1  RIS辅助的NTNs下行传输系统

    图  2  不同算法下的所提方案训练过程中奖励曲线变化情况

    图  3  不同方案下的UAV轨迹优化情况

    图  4  不同方案下的用户保密速率性能对比

    图  5  不同RIS反射元件个数下不同算法的用户保密速率性能对比

    1  基于TTD3算法的NTNs安全传输与轨迹优化流程

     初始化1:TTD3中的第1层TD3的6个神经网络参数以及第2层
     TD3的6个神经网络参数;
     初始化2:软更新因子$\psi $,每次迭代步数${N_{{\mathrm{step}}}}$,迭代次数
     Eposide,经验存放空间${{B}}$,更新间隔$C$,批次大小$v$;
     (1) for ${\mathrm{step}} = 1$ to Eposide do
     (2)   初始化UAV的位置、用户的位置以及信道状态;
     (3)  for ${\mathrm{step}} = 1$ to ${N_{{\mathrm{step}}}}$ do
     (4)    获得$ {{\boldsymbol{h}}_{\rm{S,U}}},{{\mathrm{SINR}}_{\rm{S,U}}},{{\boldsymbol{h}}_{{\rm U},i}} + {{\boldsymbol{h}}_{{\rm R},i}}{\boldsymbol{\varTheta}} {h_{{\mathrm{U,R}}}} $作为${{\boldsymbol{s}}_1}$, $ {\boldsymbol{q}} $作
          为${{\boldsymbol{s}}_2}$;
     (5)   根据式(21)产生动作${{\boldsymbol{a}}_1}$和${{\boldsymbol{a}}_2}$;
     (6)   执行相应的动作获得相应的即时奖励$ {r_1} $和${r_2}$,并观察
         新状态${\boldsymbol{s}}_1^{'}$和${\boldsymbol{s}}_2^{'}$;
     (7)  将状态转移元组$({{\boldsymbol{s}}_1},{{\boldsymbol{a}}_1},{r_1},{\boldsymbol{s}}_1^{'})$和
         $ ({{\boldsymbol{s}}_2},{{\boldsymbol{a}}_2},{r_2},{{\boldsymbol{s}}_2}^{'}) $存储在$B$中;
     (8)  随机抽取$v$条经验进行训练;
     (9)   根据式(27)获得目标值;
     (10)   根据策略延迟更新机制更新Actor网络和Critic网络参数;
     (11)   以式(26)对目标Actor网络和Critic网络参数更新;
     (12) end for
     (13) end for
    下载: 导出CSV
  • [1] AZARI M M, SOLANKI S, CHATZINOTAS S, et al. Evolution of non-terrestrial networks from 5G to 6G: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2633–2672. doi: 10.1109/COMST.2022.3199901.
    [2] ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
    [3] JIANG Bin, YAN Yingchun, YOU Li, et al. Robust secure transmission for satellite communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1598–1612. doi: 10.1109/TAES.2022.3203027.
    [4] LI Yabo, ZHANG Haijun, LONG Keping, et al. Exploring sum rate maximization in UAV-based Multi-IRS networks: IRS association, UAV altitude, and phase shift design[J]. IEEE Transactions on Communications, 2022, 70(11): 7764–7774. doi: 10.1109/TCOMM.2022.3206884.
    [5] KHAN W U, LAGUNAS E, MAHMOOD A, et al. RIS-assisted energy-efficient LEO satellite communications with NOMA[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(2): 780–790. doi: 10.1109/TGCN.2023.3344102.
    [6] ZHANG Haijun, HUANG Miaolin, ZHOU Huan, et al. Capacity maximization in RIS-UAV networks: A DDQN-based trajectory and phase shift optimization approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2583–2591. doi: 10.1109/TWC.2022.3212830.
    [7] KHAN W U, LAGUNAS E, ALI Z, et al. Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces[J]. IEEE Wireless Communications, 2022, 29(6): 22–28. doi: 10.1109/MWC.001.2200125.
    [8] LI Jingyi, XU Sai, LIU Jiajia, et al. Reconfigurable intelligent surface enhanced secure aerial-ground communication[J]. IEEE Transactions on Communications, 2021, 69(9): 6185–6197. doi: 10.1109/TCOMM.2021.3086517.
    [9] GUO Xufeng, CHEN Yuanbin, and WANG Ying. Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1795–1799. doi: 10.1109/LWC.2021.3081464.
    [10] YANG Helin, LIU Shuai, XIAO Liang, et al. Learning-based reliable and secure transmission for UAV-RIS-assisted communication systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 6954–6967. doi: 10.1109/TWC.2023.3336535.
    [11] 赵柏, 林敏, 肖圣杰, 等. 基于速率分割的可重构智能表面辅助星地融合网络鲁棒安全传输方案[J]. 通信学报, 2023, 44(12): 50–60. doi: 10.11959/j.issn.1000-436x.2023221.

    ZHAO Bai, LIN Min, XIAO Shengjie, et al. Rate splitting based robust secure transmission scheme in RIS-assisted satellite-terrestrial integrated network[J]. Journal on Communications, 2023, 44(12): 50–60. doi: 10.11959/j.issn.1000-436x.2023221.
    [12] ZHAO Bai, LIN Min, CHENG Ming, et al. Robust downlink transmission design in IRS-assisted cognitive satellite and terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2514–2529. doi: 10.1109/JSAC.2023.3288234.
    [13] NGO Q T, PHAN K T, MAHMOOD A, et al. Hybrid IRS-assisted secure satellite downlink communications: A fast deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(4): 2858–2869. doi: 10.1109/TETCI.2024.3378605.
    [14] LI Huifang, LI Jing, LIU Meng, et al. UAV-assisted secure communication for coordinated satellite-terrestrial networks[J]. IEEE Communications Letters, 2023, 27(7): 1709–1713. doi: 10.1109/LCOMM.2023.3267119.
    [15] ZHOU Gui, PAN Chunhua, REN Hong, et al. Stochastic learning-based robust beamforming design for RIS-aided millimeter-wave systems in the presence of random blockages[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 1057–1061. doi: 10.1109/TVT.2021.3049257.
    [16] LIN Zhi, NIU Hehao, AN Kang, et al. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3717–3724. doi: 10.1109/TAES.2022.3155711.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  215
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2025-02-24
  • 网络出版日期:  2025-02-25
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回