高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能超表面使能的协作无线携能同传-非正交多址接入系统安全传输方案

季薇 刘子卿 李飞 李汀 梁彦 宋云超

季薇, 刘子卿, 李飞, 李汀, 梁彦, 宋云超. 可重构智能超表面使能的协作无线携能同传-非正交多址接入系统安全传输方案[J]. 电子与信息学报, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
引用本文: 季薇, 刘子卿, 李飞, 李汀, 梁彦, 宋云超. 可重构智能超表面使能的协作无线携能同传-非正交多址接入系统安全传输方案[J]. 电子与信息学报, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
JI Wei, LIU Ziqing, LI Fei, LI Ting, LIANG Yan, SONG Yunchao. Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
Citation: JI Wei, LIU Ziqing, LI Fei, LI Ting, LIANG Yan, SONG Yunchao. Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822

可重构智能超表面使能的协作无线携能同传-非正交多址接入系统安全传输方案

doi: 10.11999/JEIT240822 cstr: 32379.14.JEIT240822
基金项目: 国家自然科学基金(61871238, 62271265)
详细信息
    作者简介:

    季薇:女,博士,教授,研究方向为无线通信与通信信号处理、智能信号处理等

    刘子卿:男,硕士生,研究方向为RIS辅助的SWIPT通信系统

    李飞:女,博士,教授,研究方向为量子智能计算、群智能和无线通信中的信号处理技术

    李汀:男,博士,副教授,研究方向为MIMO 技术、3D MIMO 技术、协作通信等

    梁彦:女,博士,副教授,研究方向为无线通信与移动通信

    宋云超:男,博士,副教授,研究方向为通信信号处理

    通讯作者:

    季薇 jiwei@njupt.edu.cn

  • 中图分类号: TN92

Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System

Funds: The National Natural Science Foundation of China (61871238, 62271265)
  • 摘要: 可重构智能超表面(RIS)因能提供额外的无源波束增益被视为一项颇具前景的技术。考虑到未来大型物联网中不同用户服务需求的多样性及信息传输的安全性,该文面向协作无线携能同传-非正交多址接入(SWIPT-NOMA)系统,提出一种RIS使能的安全传输方案。通过合理部署RIS的位置,将其同时作用于直接传输阶段和协作传输阶段。在满足非正交多址接入(NOMA)弱用户信息速率需求、NOMA强用户能量收集需求和基站最小发射功率的条件下,通过联合优化基站的有源波束成形、RIS的相移矩阵、强用户的功率分割系数等来最大化强用户的保密速率。为解决所提的多变量耦合的非凸优化问题,该文基于交替迭代优化算法,对基站的有源波束成形、直接传输阶段的RIS无源波束相移矩阵、协作传输阶段的RIS有源波束相移矩阵以及强用户的功率分割系数等进行了多次交替迭代优化,直至算法收敛。仿真结果验证了该文算法的收敛性,且与其它基准方案相比,所提方案可进一步提高强用户的保密速率。
  • 图  1  系统模型

    图  2  强用户U2的工作模式

    图  3  RIS元件个数与算法迭代收敛图

    图  4  基站天线数和保密速率关系图

    图  5  RIS元件数和保密速率关系图

    1  基站有源波束成形子问题求解算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,辅助变量$ x_1^{(i)} $
      for 交替更新求解
       已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,计算$ {t^{(i + 1)}} $
       已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)},\;x_1^{(i)} $, 计算$ {a^{(i + 1)}} $
       已知$ {t^{(i + 1)}},{a^{(i + 1)}} $,求解问题P2,获得${\boldsymbol{W}}_1^{(i + 1)},\;{\boldsymbol{W}}_2^{(i + 1)} $,
       $ x_1^{(i + 1)} $
        更新$ i = i + 1 $
      end for:收敛
     输出基站有源波束成形矩阵$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,辅助变量$ x_1^{(i)} $
    下载: 导出CSV

    2  直接传输阶段RIS无源波束成形优化子问题求解算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{Q}}_1^{(i)} $,辅助变量$ x_2^{(i)} $
      for 交替更新求解
       已知$ {\boldsymbol{Q}}_1^{(i)} $,计算$ {z^{(i + 1)}} $
       已知$ {\boldsymbol{Q}}_1^{(i)},\;x_2^{(i)} $, 计算$ {b^{(i + 1)}} $
       已知$ {z^{(i + 1)}},{b^{(i + 1)}} $,求解问题P4,获得$ {\boldsymbol{Q}}_1^{(i + 1)},x_2^{(i + 1)} $
       更新$ i = i + 1 $
      end for:收敛
     输出基站有源波束成形矩阵$ {\boldsymbol{Q}}_1^{(i)} $,辅助变量$ x_2^{(i)} $
    下载: 导出CSV

    3  基于交替迭代的整体算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{w}}_1^{(i)},{\boldsymbol{w}}_2^{(i)},{\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $
     for 交替更新求解$ {{\boldsymbol{w}}_1},{{\boldsymbol{w}}_2},{{\boldsymbol{Q}}_1},{{\boldsymbol{Q}}_2},\rho $
      已知$ {\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解问题P2,获得$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解问题P4,获得$ {\boldsymbol{Q}}_1^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\rho ^{(i)}} $,求解问题P6,获得
      $ {\boldsymbol{Q}}_2^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\boldsymbol{Q}}_2^{(i + 1)} $,求解问题P8,获得
      $ {\rho ^{(i + 1)}} $
      更新$ i = i + 1 $
     end for:收敛
    下载: 导出CSV
  • [1] PRASAD R, MANTRI D S, PANDEY S K, et al. 6G Connectivity-Systems, Technologies, and Applications: Digitalization of New Technologies, 6G and Evolution[M]. Aalborg: River Publishers, 2024: 139–156.
    [2] SARKAR D, YOGITA, YADAV S S, et al. A comprehensive survey on IRS-assisted NOMA-based 6G wireless network: Design perspectives, challenges and future directions[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2539–2562. doi: 10.1109/TNSM.2023.3348138.
    [3] AL-DWEIK A, ALSUSA E, DOBRE O A, et al. Multi-symbol rate NOMA for improving connectivity in 6G communications networks[J]. IEEE Communications Magazine, 2024, 62(7): 118–123. doi: 10.1109/MCOM.001.2300351.
    [4] DINH P, ARFAOUI M A, SHARAFEDDINE S, et al. A low-complexity framework for joint user pairing and power control for cooperative NOMA in 5G and beyond cellular networks[J]. IEEE Transactions on Communications, 2020, 68(11): 6737–6749. doi: 10.1109/TCOMM.2020.3009262.
    [5] BENBUK A A, KOUZAYHA N, COSTANTINE J, et al. Charging and wake-up of IoT devices using harvested RF energy with near-zero power consumption[J]. IEEE Internet of Things Magazine, 2023, 6(1): 162–167. doi: 10.1109/IOTM.001.2200202.
    [6] SHERAZI H H R, ZORBAS D, and O’FLYNN B. A comprehensive survey on RF energy harvesting: Applications and performance determinants[J]. Sensors, 2022, 22(8): 2990. doi: 10.3390/s22082990.
    [7] JAMEEL F, WYNE S, KADDOUM G, et al. A comprehensive survey on cooperative relaying and jamming strategies for physical layer security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2734–2771. doi: 10.1109/COMST.2018.2865607.
    [8] 卢汉成, 王亚正, 赵丹, 等. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000−436x.2022025.

    LU Hancheng, WANG Yazheng, ZHAO Dan, et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000−436x.2022025.
    [9] FU Min, MEI Weidong, and ZHANG Rui. Multi-active/passive-IRS enabled wireless information and power transfer: Active IRS deployment and performance analysis[J]. IEEE Communications Letters, 2023, 27(8): 2217–2221. doi: 10.1109/LCOMM.2023.3287573.
    [10] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [11] FANG Xingchen. Joint channel estimation algorithm for IRS-assisted multi-user MIMO systems[J]. IEEE Communications Letters, 2024, 28(2): 367–371. doi: 10.1109/LCOMM.2023.3346914.
    [12] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [13] 季薇, 刘子卿. IRS辅助的异构SWIPT-NOMA系统资源分配方案[J]. 通信学报, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027.

    JI Wei and LIU Ziqing. Resource allocation scheme for IRS assisted heterogeneous SWIPT-NOMA system[J]. Journal on Communications, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027.
    [14] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901.
    [15] GOKTAS M B, DURSUN Y, and DING Zhiguo. IRS and SWIPT-assisted full-duplex NOMA for 6G umMTC[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 1957–1970. doi: 10.1109/TGCN.2023.3289505.
    [16] LIU Qiuyan, LU Manchun, LI Na, et al. Joint beamforming and power splitting optimization for RIS-assited cooperative SWIPT NOMA systems[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 351–356. doi: 10.1109/WCNC51071.2022.9771850.
    [17] SAMY M, AI-HRAISHAWI H, KISSELEFF S, et al. Multiple RIS-assisted cooperative NOMA with user selection[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 1405–1410. doi: 10.1109/GLOBECOM54140.2023.10437225.
    [18] 朱政宇, 徐金雷, 孙钢灿, 等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.

    ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT Internet of Things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.
    [19] SHEN Yanyan, WANG Chunjie, ZANG Weilin, et al. Outage constrained max-min secrecy rate optimization for IRS-aided SWIPT systems with artificial noise[J]. IEEE Internet of Things Journal, 2024, 11(6): 9814–9828. doi: 10.1109/JIOT.2023.3325362.
    [20] HAN Hui, CAO Yang, SHENG Min, et al. IRS-aided secure MISO-NOMA networks towards internal and external eavesdropping[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4364–4370. doi: 10.1109/GLOBECOM48099.2022.10000742.
    [21] XIAO Liang, HONG Siyuan, XU Shiyu, et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(6): 4162–4174. doi: 10.1109/TCOMM.2022.3169813.
    [22] LI Baogang, SI Fuqiang, HAN Dongsheng, et al. IRS-aided SWIPT systems with power splitting and artificial noise[J]. China Communications, 2022, 19(4): 108–120. doi: 10.23919/JCC.2022.04.009.
    [23] PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901.
    [24] TANG Jie, LUO Jingci, LIU Mingqian, et al. Energy efficiency optimization for NOMA with SWIPT[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 452–466. doi: 10.1109/JSTSP.2019.2898114.
    [25] LI Qiang, HONG Mingyi, WAI H T, et al. Transmit solutions for MIMO wiretap channels using alternating optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1714–1727. doi: 10.1109/JSAC.2013.130906.
    [26] REN Juanjuan, LEI Xianfu, PENG Zhangjie, et al. RIS-assisted cooperative NOMA with SWIPT[J]. IEEE Wireless Communications Letters, 2023, 12(3): 446–450. doi: 10.1109/LWC.2022.3229843.
    [27] XU Yanqing, SHEN Chao, DING Zhiguo, et al. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4874–4886. doi: 10.1109/TSP.2017.2715008.
    [28] WU Qingqing and ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT Under QoS Constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735–1748. doi: 10.1109/JSAC.2020.3000807.
    [29] CAO Pan, THOMPSON J, and POOR H V. A sequential constraint relaxation algorithm for rank-one constrained problems[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 1060–1064. doi: 10.23919/EUSIPCO.2017.8081370.
    [30] BEN-TAL A and NEMIROVSKIAEI A S. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2001.
    [31] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  103
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 修回日期:  2025-02-21
  • 网络出版日期:  2025-02-25
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回