高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异步移动边缘计算网络中的联合任务调度与计算资源分配优化策略

王汝言 杨安琪 吴大鹏 唐桐 祝志远

王汝言, 杨安琪, 吴大鹏, 唐桐, 祝志远. 异步移动边缘计算网络中的联合任务调度与计算资源分配优化策略[J]. 电子与信息学报, 2025, 47(2): 470-479. doi: 10.11999/JEIT240685
引用本文: 王汝言, 杨安琪, 吴大鹏, 唐桐, 祝志远. 异步移动边缘计算网络中的联合任务调度与计算资源分配优化策略[J]. 电子与信息学报, 2025, 47(2): 470-479. doi: 10.11999/JEIT240685
WANG Ruyan, YANG Anqi, WU Dapeng, TANG Tong, ZHU Zhiyuan. Joint Task Scheduling and Computing Resource Allocation Optimization Strategy in Asynchronous Mobile Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 470-479. doi: 10.11999/JEIT240685
Citation: WANG Ruyan, YANG Anqi, WU Dapeng, TANG Tong, ZHU Zhiyuan. Joint Task Scheduling and Computing Resource Allocation Optimization Strategy in Asynchronous Mobile Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 470-479. doi: 10.11999/JEIT240685

异步移动边缘计算网络中的联合任务调度与计算资源分配优化策略

doi: 10.11999/JEIT240685 cstr: 32379.14.JEIT240685
基金项目: 国家自然科学基金(62271096, U20A20157),重庆市自然科学基金(CSTB2023NSCQ-LZX0134),重庆市高校创新研究群体(CXQT20017),重邮信通青创团队支持计划(SCIE-QN-2022-04),重庆市教委科学技术研究项目(KJQN202300632),重庆市博士后特别资助项目(2022CQBSHTB2057),重庆市研究生科研创新项目(CYB22250)
详细信息
    作者简介:

    王汝言:男,教授,研究方向为泛在网络,多媒体信息处理等

    杨安琪:女,硕士生,研究方向为移动边缘计算

    吴大鹏:男,教授,研究方向为泛在无线网络、社会计算等

    唐桐:男,讲师,研究方向为视频编码传输等

    祝志远:男,讲师,研究方向为可信边缘计算等

    通讯作者:

    吴大鹏 wudp@cqupt.edu.cn

  • 中图分类号: TN929.5

Joint Task Scheduling and Computing Resource Allocation Optimization Strategy in Asynchronous Mobile Edge Computing Networks

Funds: The National Natural Science Foundation of China (62271096, U20A20157), The Natural Science Foundation of Chongqing(CSTB2023NSCQ-LZX0134), The University Innovation Research Group of Chongqing (CXQT20017), The Youth Innovation Group Support Program of ICE Discipline of CQUPT (SCIE-QN-2022-04), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202300632), Chongqing Postdoctoral Special Funding Project (2022CQBSHTB2057), Chongqing Postgraduate Research and Innovation Project (CYB22250)
  • 摘要: 移动边缘计算(MEC)通过将密集型任务从传感器卸载到附近边缘服务器,来增强本地的计算能力,延长其电池寿命。然而,在面向无线传感器网等时变环境中,任务之间的异构性可能会导致通信低效率、高时延等问题。为此,该文提出一种异步移动边缘计算网络中的联合任务调度与计算资源分配优化策略,该策略实时感知任务信息年龄和能耗,将异步边缘卸载问题数学建模为NP难(NP-hard problem)的混合整数规划问题,并提出基于混合动作优势演员-评论家(HA2C)强化学习算法的任务调度和计算资源分配方案解决该问题。仿真结果表明,该文方法能显著降低异步卸载网络的平均信息年龄和能耗,满足无线传感器网络对任务时效性的要求。
  • 图  1  异步MEC系统模型图

    图  2  信息年龄随时间变化

    图  3  HA2C强化学习

    图  4  传感器数量为5,不同的MEC服务器计算能力的平均AoI和平均能耗的变化趋势

    图  5  MEC服务器计算能力为20 GHz,不同传感器数量对平均AoI和平均能耗的影响

    图  6  MEC服务器计算能力为20 GHz,不同传感器数量下的同步卸载和异步卸载模型性能

  • [1] DEMEDEIROS K, HENDAWI A, and ALVAREZ M. A survey of AI-based anomaly detection in IoT and sensor networks[J]. Sensors, 2023, 23(3): 1352. doi: 10.3390/s23031352.
    [2] ZHANG Guangyang, SHEN Chao, SHI Qingjiang, et al. AoI minimization for WSN data collection with periodic updating scheme[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 32–46. doi: 10.1109/TWC.2022.3190986.
    [3] KANDRIS D, NAKAS C, VOMVAS D, et al. Applications of wireless sensor networks: An up-to-date survey[J]. Applied System Innovation, 2020, 3(1): 14. doi: 10.3390/asi3010014.
    [4] MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318.
    [5] HORTELANO D, DE MIGUEL I, BARROSO R J D, et al. A comprehensive survey on reinforcement-learning-based computation offloading techniques in edge computing systems[J]. Journal of Network and Computer Applications, 2023, 216: 103669. doi: 10.1016/j.jnca.2023.103669.
    [6] HE Xingqiu, WANG Sheng, WANG Xiong, et al. Age-based scheduling for monitoring and control applications in mobile edge computing systems[C]. IEEE Conference on Computer Communications, London, UK, 2022: 1009–1018. doi: 10.1109/INFOCOM48880.2022.9796654.
    [7] QIN Xiaoqi, LI Yanlin, SONG Xianxin, et al. Timeliness of information for computation-intensive status updates in task-oriented communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(3): 623–638. doi: 10.1109/JSAC.2022.3229431.
    [8] YATES R D, SUN Yin, BROWN D R, et al. Age of information: An introduction and survey[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(5): 1183–1210. doi: 10.1109/JSAC.2021.3065072.
    [9] LI Rui, MA Qian, GONG Jie, et al. Age of processing: Age-driven status sampling and processing offloading for edge-computing-enabled real-time IoT applications[J]. IEEE Internet of Things Journal, 2021, 8(19): 14471–14484. doi: 10.1109/JIOT.2021.3064055.
    [10] LIU Wentao, LI Dong, LIANG Tianhao, et al. Joint trajectory and scheduling optimization for age of synchronization minimization in UAV-assisted networks with random updates[J]. IEEE Transactions on Communications, 2023, 71(11): 6633–6646. doi: 10.1109/TCOMM.2023.3297198.
    [11] XIE Mangang, GONG Jie, and MA Xiao. Is the packetized transmission efficient? An age-energy perspective[C]. IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 329–333. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162651.
    [12] YOU Changsheng, ZENG Yong, ZHANG Rui, et al. Asynchronous mobile-edge computation offloading: Energy-efficient resource management[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7590–7605. doi: 10.1109/TWC.2018.2868710.
    [13] CANG Yihan, GAO Songtao, YU Yiming, et al. Joint user scheduling and resource optimization in MEC networks with asynchronous computing[C]. 2023 IEEE International Conference on Communications Workshops, Rome, Italy, 2023: 151–157. doi: 10.1109/ICCWorkshops57953.2023.10283775.
    [14] QIN Xiaoqi, LI Yanlin, MA Nan, et al. Timeliness-oriented asynchronous task offloading in UAV-edge-computing systems[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 900–912. doi: 10.1109/TNSE.2023.3310055.
    [15] TAN Lin, KUANG Zhufang, ZHAO Lian, et al. Energy-efficient joint task Offloading and resource allocation in OFDMA-based collaborative edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1960–1972. doi: 10.1109/TWC.2021.3108641.
    [16] LI Ji, GAO Hui, LV Tiejun, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377343.
    [17] CHEN Xu, JIAO Lei, LI Wenzhong, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795–2808. doi: 10.1109/TNET.2015.2487344.
    [18] LIU Wenshuai, LI Bin, XIE Wancheng, et al. Energy efficient computation offloading in aerial edge networks with multi-agent cooperation[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 5725–5739. doi: 10.1109/TWC.2023.3235997.
    [19] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]. The 33rd International Conference on Machine Learning, New York City, USA, 2016: 1928–1937.
  • 加载中
图(6)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  274
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2025-01-25
  • 网络出版日期:  2025-02-15
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回