高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RIS辅助下的跨模态通信资源分配

陈鸣锴 孙振德 万雅芳

陈鸣锴, 孙振德, 万雅芳. RIS辅助下的跨模态通信资源分配[J]. 电子与信息学报, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
引用本文: 陈鸣锴, 孙振德, 万雅芳. RIS辅助下的跨模态通信资源分配[J]. 电子与信息学报, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
Citation: CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619

RIS辅助下的跨模态通信资源分配

doi: 10.11999/JEIT240619 cstr: 32379.14.JEIT240619
基金项目: 国家自然科学基金(62001246),江苏省重点研发计划项目(BE2023035),江苏省通信与网络技术工程研究中心开放课题
详细信息
    作者简介:

    陈鸣锴:男,副教授,研究方向为无线通信、信号处理、多媒体信息处理等

    孙振德:男,硕士生,研究方向为语义通信

    万雅芳:女,硕士生,研究方向为多媒体通信

    通讯作者:

    陈鸣锴 mkchen@njupt.edu.cn

  • 中图分类号: TN911

Resource Allocation for RIS-aided Cross-Model Communications

Funds: The National Natural Science Foundation of China (62001246), The Key Reserch and Development Program of Jiangsu Province Key project and topics (BE2023035), Open Research Fundation of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT
  • 摘要: 针对视频和触觉业务共存的跨模态业务场景,该文构建了可重构智能表面(RIS)辅助的共存网络切片系统,用以提高视频业务和触觉业务的传输速率和可靠性。同时,为了有效降低触觉业务通过穿孔带给视频业务的资源损耗,提出了动态被动波束赋形方案,允许RIS在不同时隙进行动态调整。基于上述方案,该文在确保触觉业务传输的时延和可靠性满足约束的同时,构建最大化视频业务传输速率的优化问题,以满足跨模态业务共存需求,实现资源的合理分配。为求解此优化问题,该文将其建模为一个马尔可夫决策过程(MDP),通过深度确定性策略梯度(DDPG)算法来进行视频数据和触觉数据传输资源的联合优化。仿真结果显示,与现有方案相比,所提方案具有一定的优越性,在保证传输触觉业务可靠性的前提下,提高了约66.67%的视频业务和速率。
  • 图  1  基于穿孔方案的RIS辅助跨模态通信系统架构

    图  2  资源块的说明和提出的动态被动波束形成方案

    图  3  基于actor-critic的DDPG算法框架图

    图  4  不同方案下用户和速率随着基站功率的变化趋势

    图  5  不同方案下用户和速率随着RIS反射单元数量的变化趋势

    图  6  不同基站功率和RIS反射单元数量对触觉数据包平均时延的影响

    图  7  不同触觉数据包到达速率下用户和速率的变化情况

    图  8  不同功率下奖励随步长的变化

    图  9  不同学习率下平均奖励随步长的变化

    1  DDPG算法

     初始化:${s_1}$,${\theta _a}$,${\theta _c}$,${\theta '_a} \leftarrow {\theta _a}$和${\theta '_c} \leftarrow {\theta _c}$,经验回放池$\mathbb{N}$,随
     机噪声${{{\boldsymbol{N}}}_t}$
     while 迭代回合$ \le $最大迭代回合 do
      while $t \le T$ do
       • 根据状态${s_t}$和随机噪声${{{\boldsymbol{N}}}_t}$,通过actor网络计算动作
       ${{\boldsymbol{a}}_t} = \mu ({{\boldsymbol{s}}_t};{\theta _a}) + {{\boldsymbol N}_t}$
       • 执行动作${{\boldsymbol{a}}_t}$,获得奖赏值$r({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t})$和下一状态${{\boldsymbol{s}}_{t + 1}}$
       • 将经验$({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{r_t},{{\boldsymbol{s}}_{t + 1}})$存储至经验回放池$\mathbb{N}$中
       • 从经验回放池$\mathbb{N}$中随机采样${N_{{\mathrm{batch}}}}$个经验样本进行神经网
       络训练
       • 通过式(26)的近似形式,计算得到当前训练critic网络的损
       失函数
       • 通过损失函数$L({\theta _c})$关于${\theta _c}$的梯度更新critic网络的参数
       • 通过式(23)更新actor网络的参数${\theta _a}$
       • 使用式(29)和式(30)来更新目标actor网络和目标critic网络
       的参数${\theta '_a}$和${\theta '_c}$
       • $t \leftarrow t + 1$
      end while
     end while
    下载: 导出CSV

    表  1  仿真参数表

    参数意义 设定数值
    资源块RB总数$K$ 200
    时隙个数$T$ 20
    一个时隙的持续时间 1 ms
    一个微小时隙的持续时间$\varDelta $ 0.125 ms
    一个时隙内微小时隙个数${M}$ 8
    RB的频率带宽$B$ 180 kHz
    触觉数据包到达速率$\lambda $ 3
    触觉数据包的大小$D_l^{m,t}$ 20 Byte
    高斯随机噪声功率${\delta ^2}$ –93 dBm
    触觉数据包的解码错误概率${\varepsilon _l}$ ${10^{ - 6}}$
    下载: 导出CSV
  • [1] 李玉宏, 张朋, 金帝, 等. 应用对未来网络的需求与挑战[J]. 电信科学, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.

    LI Yuhong, ZHANG Peng, JIN Di, et al. Application's needs and challenges for future networks[J]. Telecommunications Science, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.
    [2] WEI Xin, WU Dan, ZHOU Liang, et al. Cross-modal communication technology: A survey[J]. Fundamental Research, 2023. doi: 10.1016/j.fmre.2023.08.002.
    [3] WEI Xin, ZHANG Meng, and ZHOU Liang. Cross-modal transmission strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3991–4003. doi: 10.1109/TCSVT.2021.3105130.
    [4] 陈鸣锴, 柳明浩, 王文俊, 等. 面向6G的跨模态语义编解码技术[J]. 信号处理, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.

    CHEN Mingkai, LIU Minghao, WANG Wenjun, et al. Codec for cross-modal semantic communication in 6G[J]. Journal of Signal Processing, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.
    [5] ALTAF KHATTAK S B, NASRALLA M M, and REHMAN I U. The role of 6G networks in enabling future smart health services and applications[C]. Proceedings of 2022 IEEE International Smart Cities Conference, Pafos, Cyprus, 2022: 1–7. doi: 10.1109/ISC255366.2022.9922093.
    [6] 李昂, 陈建新, 魏昕, 等. 面向6G的跨模态信号重建技术[J]. 通信学报, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.

    LI Ang, CHEN Jianxin, WEI Xin, et al. 6G-oriented cross-modal signal reconstruction technology[J]. Journal on Communications, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.
    [7] ZHOU Liang, WU Dan, CHEN Jianxin, et al. Cross-modal collaborative communications[J]. IEEE Wireless Communications, 2020, 27(2): 112–117. doi: 10.1109/MWC.001.1900201.
    [8] STEINBACH E, STRESE M, EID M, et al. Haptic codecs for the tactile internet[J]. Proceedings of the IEEE, 2019, 107(2): 447–470. doi: 10.1109/JPROC.2018.2867835.
    [9] ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740–743. doi: 10.1109/LCOMM.2019.2900044.
    [10] SUN Haipeng, YANG Jin, SU Junhao, et al. Joint resource scheduling for coexistence of URLLC and eMBB in 5G wireless networks[C]. Proceedings of 2021 Computing, Communications and IoT Applications, Shenzhen, China, 2021: 53–58. doi: 10.1109/ComComAp53641.2021.9653121.
    [11] ZHAO Yunzhi, CHI Xuefen, QIAN Lei, et al. Resource allocation and slicing puncture in cellular networks with eMBB and URLLC terminals coexistence[J]. IEEE Internet of Things Journal, 2022, 9(19): 18431–18444. doi: 10.1109/JIOT.2022.3160647.
    [12] REN Rong, WANG Jie, YU Jingming, et al. Hybrid puncturing and superposition scheme for multiplexing uRLLC and eMBB services based on deep reinforcement learning[C]. Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 806–810. doi: 10.1109/ICCC56324.2022.10065784.
    [13] GUO Jiangfeng, NIE Gaofeng, TIAN Hui, et al. Puncture-predictive fairness scheduling scheme for eMBB and URLLC based on TD3 algorithm[C]. Proceedings of 2023 IEEE/CIC International Conference on Communications in China, Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233289.
    [14] ZHUANSUN Chenlu, YAN Kedong, ZHANG Gongxuan, et al. Hypergraph-based joint channel and power resource allocation for cross-cell M2M communication in IIoT[J]. IEEE Internet of Things Journal, 2023, 10(17): 15350–15361. doi: 10.1109/JIOT.2023.3263567.
    [15] WANG Lei, YIN Anmin, JIANG Xue, et al. Resource allocation for multi-traffic in cross-modal communications[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 60–72. doi: 10.1109/TNSM.2022.3207776.
    [16] 文梦甜. 跨模态通信中传输策略优化研究[D]. [硕士论文], 南京邮电大学, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.

    WEN Mengtian. Research on optimization of transmission strategy in cross-modal communications[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.
    [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [18] LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi: 10.1109/MCOM.2018.1700659.
    [19] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 129. doi: 10.1186/s13638-019-1438-9.
    [20] GHANEM W R, JAMALI V, and SCHOBER R. Joint beamforming and phase shift optimization for multicell IRS-aided OFDMA-URLLC systems[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNC49053.2021.9417582.
    [21] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634.
    [22] MELGAREJO D C, KALALAS C, DE SENA A S, et al. Reconfigurable intelligent surface-aided grant-free access for uplink URLLC[C]. Proceedings of the 2020 2nd 6G Wireless Summit, Levi, Finland, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083788.
    [23] ALMEKHLAFI M, ARFAOUI M A, ELHATTAB M, et al. Joint resource allocation and phase shift optimization for RIS-aided eMBB/URLLC traffic multiplexing[J]. IEEE Transactions on Communications, 2022, 70(2): 1304–1319. doi: 10.1109/TCOMM.2021.3127265.
    [24] ZHOU Shuangquan, ZHANG Wenbin, XU Fanglei, et al. Energy-efficient resource allocation in DDPG-based integrated satellite-terrestrial network[C]. Proceedings of 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 147–152. doi: 10.1109/GCWkshps58843.2023.10464487.
    [25] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]. Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver CO, USA, 1999: 1057–1063.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  180
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2025-02-12
  • 网络出版日期:  2025-02-21
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回