高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双卷积自编码器的自适应波束形成

蒋伊琳 李帅 郑沛 唐元博

蒋伊琳, 李帅, 郑沛, 唐元博. 基于双卷积自编码器的自适应波束形成[J]. 电子与信息学报, 2025, 47(2): 510-518. doi: 10.11999/JEIT240486
引用本文: 蒋伊琳, 李帅, 郑沛, 唐元博. 基于双卷积自编码器的自适应波束形成[J]. 电子与信息学报, 2025, 47(2): 510-518. doi: 10.11999/JEIT240486
JIANG Yilin, LI Shuai, ZHENG Pei, TANG Yuanbo. Adaptive Beamforming Based on Dual Convolutional Autoencoder[J]. Journal of Electronics & Information Technology, 2025, 47(2): 510-518. doi: 10.11999/JEIT240486
Citation: JIANG Yilin, LI Shuai, ZHENG Pei, TANG Yuanbo. Adaptive Beamforming Based on Dual Convolutional Autoencoder[J]. Journal of Electronics & Information Technology, 2025, 47(2): 510-518. doi: 10.11999/JEIT240486

基于双卷积自编码器的自适应波束形成

doi: 10.11999/JEIT240486 cstr: 32379.14.JEIT240486
基金项目: 国防科技基础加强计划 (2019-JCJQ-ZD-067-00)
详细信息
    作者简介:

    蒋伊琳:男,博士,副教授,研究方向为深度学习、信号处理

    李帅:男,硕士生,研究方向为深度学习、信号处理

    郑沛:男,高级工程师,研究方向为电磁频谱感知

    唐元博:男,硕士生,研究方向为深度学习、信号处理

    通讯作者:

    李帅 lishaui@hrbeu.edu.cn

  • 中图分类号: TN911.7

Adaptive Beamforming Based on Dual Convolutional Autoencoder

Funds: The National Defense Science and Technology Strengthening Program (2019-JCJQ-ZD-067-00)
  • 摘要: 在低信噪比环境下,阵列天线获取空域信号的来波方向极其困难,导致一般的波束形成方法无法准确形成正对入射信号的波束。针对上述问题,该文提出了一种基于双卷积自编码器的盲接收自适应波束形成(Dual Convolutional AutoEncoder-Adaptive Beamforming, DCAE-ABF)方法,该方法在基于大量空域统计信息的情况下,以时域-频域联合条件作为约束,利用两个独立的卷积自编码器(CAE)分别对阵列接收信号与辐射源信号进行特征提取,并使用深度神经网络(DNN)将两个CAE的特征编码进行连接,构建DCAE网络,实现在低信噪比环境下,面对未知频率和来波方向的入射信号时,也能够自适应形成正对入射信号的波束,达到盲接收的效果。仿真实验结果表明,在低信噪比环境下,单信号与双信号入射时所带来的信噪比增益均高于常规波束形成(CBF)方法与基于最小均方误差的自适应波束形成(Minimum Mean Square Error-Adaptive BeamForming, MMSE-ABF)方法,以及基于卷积神经网络的自适应波束形成方法(Convolutional Neural Networks- Adaptive BeamForming, CNN-ABF),且该增益在入射信号频率、角度变化时仍具有良好的稳定性。
  • 图  1  信号接收模型示意图

    图  2  DCAE-ABF示意图

    图  3  DCAE网络结构图

    图  4  4种方法处理后的单信号频谱对比

    图  5  4种方法处理后信噪比变化图

    图  6  4种方法处理后的双信号频谱对比

    表  1  超参数对输入测试结果带来的部分影响

    自编码器层数 训练
    时间
    CDAE
    学习率
    DNN
    学习率
    CAE
    学习率
    信噪比
    增益(dB)
    3层 适中 0.00007 0.0003 0.00003 20.9
    0.00008 0.0004 0.00004 21.08
    0.00009 0.0005 0.00005 21.56
    0.0001 0.0006 0.00006 21.13
    4层 较长 0.00007 0.0003 0.00003 16.12
    0.00008 0.0004 0.00004 16.13
    0.00009 0.0005 0.00005 16.17
    0.0001 0.0006 0.00006 16.68
    下载: 导出CSV

    表  2  DCAE网络训练过程中的超参数

    神经
    网络
    初始
    学习率
    学习率
    衰减率
    网络层数
    CDAE 0.00009 0.95 3层
    DNN 0.0005 3层
    CAE 0.00005 3层
    下载: 导出CSV

    表  3  DCAE网络的特征结构

    输入形状 输出形状
    阵列接收信号自编码器
    网络的解码器部分
    输入层 3200
    卷积层1 3200 3200×64
    池化层1 3200×64 1×800×64
    卷积层2 1×800×64 1×800×64
    池化层2 1×800×64 1×400×64
    卷积层3 1×400×64 1×400×32
    池化层3 1×400×32 1×200×32
    DNN连接部分 数据展平 1×200×32 6400
    全连接层1 6400 4800
    全连接层2 4800 3200
    全连接层3 3200 1600
    数据重构 1600 1×50×32
    辐射源原始信号自编码器
    网络的解码器部分
    反池化层1 1×50×32 1×100×32
    反卷积层1 1×100×32 1×100×64
    反池化层2 1×100×64 1×200×64
    反卷积层2 1×200×64 1×200×64
    反池化层3 1×200×64 1×400×64
    反卷积层3 1×400×64 1×400
    输出层 1×400 1×400
    下载: 导出CSV
  • [1] 唐敏, 齐栋, 刘成城, 等. 基于多级阻塞的稳健相干自适应波束形成[J]. 电子与信息学报, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332.

    TANG Min, QI Dong, LIU Chengcheng, et al. New adaptive beamformer for coherent interference based on multistage blocking[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332.
    [2] 沈季, 万显荣, 易建新, 等. 复杂干扰场景下的稳健自适应波束形成[J]. 系统工程与电子技术, 2023, 45(4): 941–949. doi: 10.12305/j.issn.1001-506X.2023.04.01.

    SHEN Ji, WAN Xianrong, YI Jianxin, et al. Robust adaptive beamforming in complex interference scenarios[J]. Systems Engineering and Electronics, 2023, 45(4): 941–949. doi: 10.12305/j.issn.1001-506X.2023.04.01.
    [3] WU Xun, ZHANG Shurui, MA Xiaofeng, et al. The adaptive wideband beamforming using convolutional neural network[C]. Proceedings of 2022 International Conference on Microwave and Millimeter Wave Technology, Harbin, China, 2022: 1–3. doi: 10.1109/ICMMT55580.2022.10022889.
    [4] 王兆彬, 巩朋成, 邓薇, 等. 联合协方差矩阵重构和ADMM的鲁棒波束形成[J]. 哈尔滨工业大学学报, 2023, 55(4): 64–71. doi: 10.11918/202107104.

    WANG Zhaobin, GONG Pengcheng, DENG Wei, et al. Robust beamforming by joint covariance matrix reconstruction and ADMM[J]. Journal of Harbin Institute of Technology, 2023, 55(4): 64–71. doi: 10.11918/202107104.
    [5] GODARA L C. Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations[J]. Proceedings of the IEEE, 1997, 85(8): 1195–1245. doi: 10.1109/5.622504.
    [6] ZAHARIS Z D, GRAVAS I P, LAZARIDIS P I, et al. An effective modification of conventional beamforming methods suitable for realistic linear antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5269–5279. doi: 10.1109/TAP.2020.2977822.
    [7] SENTHILKUMAR K S, PIRAPAHARAN K, HOOLE P R P, et al. Single perceptron model for smart beam forming in array antennas[J]. International Journal of Electrical and Computer Engineering (IJECE), 2016, 6(5): 2300–2309. doi: 10.11591/ijece.v6i5.10719.
    [8] EL ZOOGHBY A H, CHRISTODOULOU C G, and GEORGIOPOULOS M. A neural network-based smart antenna for multiple source tracking[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 768–776. doi: 10.1109/8.855496.
    [9] RAMEZANPOUR P, REZAEI M J, and MOSAVI M R. Deep‐learning‐based beamforming for rejecting interferences[J]. IET Signal Processing, 2020, 14(7): 467–473. doi: 10.1049/iet-spr.2019.0495.
    [10] SALLOMI A H and AHMED S. Multi-layer feed forward neural network application in adaptive beamforming of smart antenna system[C]. Proceedings of 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications, Baghdad, Iraq, 2016: 1–6. doi: 10.1109/AIC-MITCSA.2016.7759925.
    [11] MOHAMMADZADEH S, NASCIMENTO V H, DE LAMARE R C, et al. Robust beamforming based on complex-valued convolutional neural networks for sensor arrays[J]. IEEE Signal Processing Letters, 2022, 29: 2108–2112. doi: 10.1109/LSP.2022.3212637.
    [12] MALLIORAS I, ZAHARIS Z D, LAZARIDIS P I, et al. A novel realistic approach of adaptive beamforming based on deep neural networks[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 8833–8848. doi: 10.1109/TAP.2022.3168708.
    [13] ZAHARIS Z D, SKEBERIS C, XENOS T D, et al. Design of a novel antenna array beamformer using neural networks trained by modified adaptive dispersion invasive weed optimization based data[J]. IEEE Transactions on Broadcasting, 2013, 59(3): 455–460. doi: 10.1109/TBC.2013.2244793.
    [14] 梁梦薇, 何劲, 舒汀, 等. 阵元位置互质的线性阵列: 阵列校正和波束形成[J]. 电子与信息学报, 2024, 46(1): 240–248. doi: 10.11999/JEIT221539.

    LIANG Mengwei, HE Jin, SHU Ting, et al. Linear coprime sensor location arrays: Array calibration and beamforming[J]. Journal of Electronics & Information Technology, 2024, 46(1): 240–248. doi: 10.11999/JEIT221539.
    [15] 陈鹏, 景晓簪, 陈洋, 等. 稳健的特征空间基变换自适应波束形成[J]. 哈尔滨工业大学学报, 2023, 55(5): 71–77,113. doi: 10.11918/202112102.

    CHEN Peng, JING Xiaozan, CHEN Yang, et al. Robust eigenspace bases transition technique for adaptive beamforming[J]. Journal of Harbin Institute of Technology, 2023, 55(5): 71–77,113. doi: 10.11918/202112102.
    [16] ZHU Yi, WU Xindong, QIANG Jipeng, et al. Representation learning via an integrated autoencoder for unsupervised domain adaptation[J]. Frontiers of Computer Science, 2023, 17(5): 175334. doi: 10.1007/s11704-022-1349-5.
    [17] LU Cai, MU Zuochen, ZONG Jingjing, et al. Unsupervised VSP up-and downgoing wavefield separation via dual convolutional autoencoders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5900315. doi: 10.1109/TGRS.2023.3334309.
    [18] AL KASSIR H, ZAHARIS Z D, LAZARIDIS P I, et al. A review of the state of the art and future challenges of deep learning-based beamforming[J]. IEEE Access, 2022, 10: 80869–80882. doi: 10.1109/ACCESS.2022.3195299.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  136
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2025-02-11
  • 网络出版日期:  2025-02-19
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回