高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模板对齐与多阶段特征学习的光场角度重建

郁梅 周涛 陈晔曜 蒋志迪 骆挺 蒋刚毅

郁梅, 周涛, 陈晔曜, 蒋志迪, 骆挺, 蒋刚毅. 基于模板对齐与多阶段特征学习的光场角度重建[J]. 电子与信息学报, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
引用本文: 郁梅, 周涛, 陈晔曜, 蒋志迪, 骆挺, 蒋刚毅. 基于模板对齐与多阶段特征学习的光场角度重建[J]. 电子与信息学报, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
YU Mei, ZHOU Tao, CHEN Yeyao, JIANG Zhidi, LUO Ting, JIANG Gangyi. Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
Citation: YU Mei, ZHOU Tao, CHEN Yeyao, JIANG Zhidi, LUO Ting, JIANG Gangyi. Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481

基于模板对齐与多阶段特征学习的光场角度重建

doi: 10.11999/JEIT240481 cstr: 32379.14.JEIT240481
基金项目: 国家自然科学基金(62271276, 62071266, 62401301),浙江省自然科学基金(LQ24F010002)
详细信息
    作者简介:

    郁梅:女,教授,研究方向为多媒体信号处理与通信、计算成像、视觉感知与编码、图像视频质量评价等

    周涛:男,硕士生,研究方向为光场图像处理、光场角度重建

    陈晔曜:男,讲师,研究方向为高动态范围成像、计算成像、视频处理等

    蒋志迪:男,副教授,研究方向为数字视频压缩与通信、多视图视频编码和图像处理

    骆挺:男,教授,研究方向为水下图像增强,高动态范围成像等

    蒋刚毅:男,教授,研究方向为多媒体信号处理,图像处理与视频压缩,计算成像与视觉感知等

    通讯作者:

    蒋刚毅 jianggangyi@126.com

  • 中图分类号: TN911.73

Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning

Funds: The National Natural Science Foundation of China (62271276, 62071266, 62401301), The Natural Science Foundation of Zhejiang Province (LQ24F010002)
  • 摘要: 现有光场图像角度重建方法通过探索光场图像内在的空间-角度信息以进行角度重建,但无法同时处理不同视点层的子孔径图像重建任务,难以满足光场图像可伸缩编码的需求。为此,将视点层视为稀疏模板,该文提出一种能够单模型处理不同角度稀疏模板的光场图像角度重建方法。将不同的角度稀疏模板视为微透镜阵列图像的不同表示,通过模板对齐将输入的不同视点层整合为微透镜阵列图像,采用多阶段特征学习方式,以微透镜阵列级-子孔径级的特征学习策略来处理不同输入的稀疏模板,并辅以独特的训练模式,以稳定地参考不同角度稀疏模板,重建任意角度位置的子孔径图像。实验结果表明,所提方法能有效地参考不同稀疏模板,灵活地重建任意角度位置的子孔径图像,且所提模板对齐与训练方法能有效地应用于其它光场图像超分辨率重建方法以提升其处理不同角度稀疏模板的能力。
  • 图  1  所提 TAF-LFAR 网络框架

    图  2  插值结果示意图

    图  3  子孔径级特征融合模块示意图

    图  4  特征映射模块示意图

    图  5  目标角度位置的子孔径图像合成结构图

    图  6  不同光场图像角度重建方法的视觉比较结果(可视化结果所处角度位置如(a1)和(b1)右下角网格所示

    图  7  所提方法针对光场图像可伸缩编码的应用效果

    表  1  实验所用训练和测试集划分

    使用方法 数据集 数据类型 场景个数
    训练 100Scenes[12] 真实场景 100
    测试 Reflective[21] 真实场景 15
    Occlusion[21] 真实场景 25
    30Scenes[12] 真实场景 30
    下载: 导出CSV

    表  2  不同光场角度超分辨率重建方法在3×3→7×7重建任务上的定量比较

    方法 30 Scenes Occlusion Reflective
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    ShearedEPI[13] 42.74 0.986 7 39.84 0.981 9 40.32 0.964 7
    Yeung et al.[8] 44.53 0.990 0 42.06 0.987 0 42.56 0.971 1
    LFASR-geo[14] 44.16 0.988 9 41.71 0.986 6 42.04 0.969 3
    FS-GAF[15] 44.32 0.989 0 41.94 0.987 0 42.62 0.970 6
    DistgASR[11] 45.90 0.996 8 43.88 0.996 0 43.95 0.988 7
    IRVAE[16] 45.64 0.996 7 43.62 0.995 8 42.48 0.988 1
    LFAR-TAF 46.07 0.997 0 44.06 0.996 2 43.95 0.989 5
    下载: 导出CSV

    表  3  所提模板对齐和训练策略在不同角度重建方法上的验证

    方法 重建任务 30 Scenes Occlusion Reflective
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    DistgASR[11] 角度
    5→7×7
    44.70 0.995 9 41.84 0.994 2 42.07 0.984 9
    IRVAE[16] 44.62 0.995 9 41.87 0.994 3 41.86 0.985 0
    LFAR-TAF 45.08 0.996 0 42.53 0.994 9 42.24 0.984 1
    DistgASR[11] 角度
    3×3→7×7
    45.81 0.996 7 43.73 0.995 9 43.81 0.988 3
    IRVAE[16] 45.36 0.996 5 43.07 0.995 6 42.90 0.987 4
    LFAR-TAF 46.07 0.997 0 44.06 0.996 2 43.95 0.989 5
    下载: 导出CSV

    表  4  所提方法各核心模块的消融实验结果

    方法30 ScenesOcclusionReflective
    PSNR(dB)SSIMPSNR(dB)SSIMPSNR(dB)SSIM
    w/o MLAIFL45.310.995 843.780.996 043.280.988 3
    w/o SAIF45.880.996 843.780.996 043.880.989 5
    LFAR-TAF46.070.997 044.060.996 243.950.989 5
    下载: 导出CSV
  • [1] CHEN Yeyao, JIANG Gangyi, YU Mei, et al. HDR light field imaging of dynamic scenes: A learning-based method and a benchmark dataset[J]. Pattern Recognition, 2024, 150: 110313. doi: 10.1016/j.patcog.2024.110313.
    [2] ZHAO Chun and JEON B. Compact representation of light field data for refocusing and focal stack reconstruction using depth adaptive multi-CNN[J]. IEEE Transactions on Computational Imaging, 2024, 10: 170–180. doi: 10.1109/TCI.2023.3347910.
    [3] ATTAL B, HUANG Jiabin, ZOLLHOFER M, et al. Learning neural light fields with ray-space embedding[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 19787–19797. doi: 10.1109/CVPR52688.2022.01920.
    [4] HUR J, LEE J Y, CHOI J, et al. I see-through you: A framework for removing foreground occlusion in both sparse and dense light field images[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 229–238. doi: 10.1109/WACV56688.2023.00031.
    [5] 邓慧萍, 曹召洋, 向森, 等. 基于上下文感知跨层特征融合的光场图像显著性检测[J]. 电子与信息学报, 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.

    DENG Huiping, CAO Zhaoyang, XIANG Sen, et al. Saliency detection based on context-aware cross-layer feature fusion for light field images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.
    [6] 武迎春, 王玉梅, 王安红, 等. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.

    WU Yingchun, WANG Yumei, WANG Anhong, et al. Light field all-in-focus image fusion based on edge enhanced guided filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.
    [7] YOON Y, JEON H G, YOO D, et al. Learning a deep convolutional network for light-field image super-resolution[C]. 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 2015: 57–65. doi: 10.1109/ICCVW.2015.17.
    [8] YEUNG H W F, HOU Junhui, CHEN Jie, et al. Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 138–154. doi: 10.1007/978-3-030-01231-1_9.
    [9] WU Gaochang, ZHAO Mandan, WANG Liangyong, et al. Light field reconstruction using deep convolutional network on EPI[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1638–1646. doi: 10.1109/CVPR.2017.178.
    [10] WANG Yunlong, LIU Fei, WANG Zilei, et al. End-to-end view synthesis for light field imaging with pseudo 4DCNN[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018, pp. 340–355. doi: 10.1007/978-3-030-01216-8_21.
    [11] WANG Yingqian, WANG Longguang, WU Gaochang, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 425–443. doi: 10.1109/TPAMI.2022.3152488.
    [12] KALANTARI N K, WANG Tingchun, and RAMAMOORTHI R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6): 193. doi: 10.1145/2980179.2980251.
    [13] WU Gaochang, LIU Yebin, DAI Qionghai, et al. Learning sheared EPI structure for light field reconstruction[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3261–3273. doi: 10.1109/TIP.2019.2895463.
    [14] JIN Jing, HOU Junhui, YUAN Hui, et al. Learning light field angular super-resolution via a geometry-aware network[C]. 2020 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11141–11148. doi: 10.1609/aaai.v34i07.6771.
    [15] JIN Jing, HOU Junhui, CHEN Jie, et al. Deep coarse-to-fine dense light field reconstruction with flexible sampling and geometry-aware fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1819–1836. doi: 10.1109/TPAMI.2020.3026039.
    [16] HAN Kang and XIANG Wei. Inference-reconstruction variational autoencoder for light field image reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 5629–5644. doi: 10.1109/TIP.2022.3197976.
    [17] ÇETINKAYA E, AMIRPOUR H, and TIMMERER C. LFC-SASR: Light field coding using spatial and angular super-resolution[C]. 2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Taipei City, China, 2022: 1–6. doi: 10.1109/ICMEW56448.2022.9859373.
    [18] AMIRPOUR H, TIMMERER C, and GHANBARI M. SLFC: Scalable light field coding[C]. 2021 Data Compression Conference (DCC), Snowbird, USA, 2021: 43–52. doi: 10.1109/DCC50243.2021.00012.
    [19] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 2472–2481. doi: 10.1109/CVPR.2018.00262.
    [20] HAN Dongchen, YE Tianzhu, HAN Yizeng, et al. Agent attention: On the integration of softmax and linear attention[C]. 18th European Conference on Computer Vision, Milan, Italy, 2024: 124–140. doi: 10.1007/978-3-031-72973-7_8.
    [21] RAJ A S, LOWNEY M, SHAH R, et al. Stanford Lytro light field archive[EB/OL]. http://lightfields.stanford.edu/LF2016.html, 2016.
    [22] RERABEK M and EBRAHIMI T. New light field image dataset[C]. 8th International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 2016.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  119
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 修回日期:  2025-01-23
  • 网络出版日期:  2025-02-09
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回