高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面对高速移动场景的OTFS系统导频设计方法

李一兵 汤云鹤 简鑫 孙骞 陈浩

李一兵, 汤云鹤, 简鑫, 孙骞, 陈浩. 面对高速移动场景的OTFS系统导频设计方法[J]. 电子与信息学报, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
引用本文: 李一兵, 汤云鹤, 简鑫, 孙骞, 陈浩. 面对高速移动场景的OTFS系统导频设计方法[J]. 电子与信息学报, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
LI Yibing, TANG Yunhe, JIAN Xin, SUN Qian, CHEN Hao. Pilot Design Method for OTFS System in High-Speed Mobile Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
Citation: LI Yibing, TANG Yunhe, JIAN Xin, SUN Qian, CHEN Hao. Pilot Design Method for OTFS System in High-Speed Mobile Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349

面对高速移动场景的OTFS系统导频设计方法

doi: 10.11999/JEIT240349 cstr: 32379.14.JEIT240349
基金项目: 国家自然科学基金(52271311),中国船舶集团有限公司第七二二所 2022 年创新基金(2022J-4)
详细信息
    作者简介:

    李一兵:男,教授,研究方向为通信信号处理

    汤云鹤:男,硕士生,研究方向为OTFS通信信号处理

    简鑫:男,硕士生,研究方向为5G通信信号处理

    孙骞:男,副教授,研究方向为通信信号处理

    陈浩:男,高级工程师,研究方向为通信信号处理

    通讯作者:

    孙骞 qsun@hrbeu.edu.cn

  • 中图分类号: TN929.5

Pilot Design Method for OTFS System in High-Speed Mobile Scenarios

Funds: The National Natural Science Foundation of China General Project (52271311), 2022 Innovation Foundation of China State Shipbuilding Corporation 722 Institute (2022J-4)
  • 摘要: 正交时频空(Orthogonal Time Frequency Space, OTFS)系统由于在面对高速移动通信场景下的时频双色散信道时的优异性能受到了广泛关注。为了准确获取信道状态信息,采用基于压缩感知的信道估计方法,并辅以特殊的导频序列完成信道估计。该文针对导频优化问题,提出了一种基于改进遗传算法的OTFS导频序列优化方法,该方法以互相关最小化为优化目标,采用遗传算法进行寻优,并能够自适应调整交叉和变异概率,在较少的迭代次数下即可实现比传统伪随机序列更优的互相关性,能够有效提高信道估计的准确性。此外,考虑到目标函数的计算量较大,该文分析了互相关的计算过程,并对其中的冗余计算进行了化简,与直接计算字典集的互相关值相比大大提高了算法的优化效率。
  • 图  1  OTFS系统总体框图

    图  4  不同导频序列的信道估计误码率性能

    图  2  不同智能算法的导频优化收敛性能对比

    图  3  不同导频序列的信道估计归一化均方误差性能

    表  1  OTFS系统仿真参数

    参数
    时延点数$M$ 16
    多普勒点数$N$ 16
    中心频率${f_{\rm{c}}}$ 4×109 Hz
    子载波间隔$\Delta f$ 105 Hz
    最大时延${\tau _{\max }}$ 2 510 ns
    最大移动速度${v_{\max }}$ 1 000 km/h
    字典集过采样因子$\lambda $ 10
    下载: 导出CSV
  • [1] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. IEEE Wireless Communications & Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [2] QIAN Mi, JI Fei, GE Yao, et al. Block-wise index modulation and receiver design for high-mobility OTFS communications[J]. IEEE Transactions on Communications, 2023, 71(10): 5726–5739. doi: 10.1109/TCOMM.2023.3288568.
    [3] WANG Xuehan, SHI Xu, WANG Jintao, et al. On the Doppler squint effect in OTFS systems over doubly-dispersive channels: Modeling and evaluation[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8781–8796. doi: 10.1109/TWC.2023.3265989.
    [4] SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411.
    [5] WEN Haifeng, YUAN Weijie, YUEN C, et al. MF-OAMP-based joint channel estimation and data detection for OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2948–2953. doi: 10.1109/TVT.2023.3319562.
    [6] RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357.
    [7] LIU Tianjun, FAN Pingzhi, LI Jiangdong, et al. Sequence design for optimized ambiguity function and PAPR under arbitrary spectrum hole constraint[C]. 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, 2017: 173–177. doi: 10.1109/IWSDA.2017.8097080.
    [8] ZHANG Hongyang, HUANG Xiaojing, and ZHANG J A. Low-overhead OTFS transmission with frequency or time domain channel estimation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 799–811. doi: 10.1109/TVT.2023.3305921.
    [9] WANG Siqiang, GUO Jing, WANG Xinyi, et al. Pilot design and optimization for OTFS modulation[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1742–1746. doi: 10.1109/LWC.2021.3078527.
    [10] OUCHIKH R, CHONAVEL T, AÏSSA-EL-BEY A, et al. Joint channel estimation and data detection for high rate orthogonal time frequency space systems[J]. International Journal of Communication Systems, 2023, 36(16): e5579. doi: 10.1002/dac.5579.
    [11] ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2590–2603. doi: 10.1109/TWC.2015.2505315.
    [12] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [13] CHEN Jianqiao, ZHANG Xi, and ZHANG Ping. Bayesian learning for BPSO-based pilot pattern design over sparse OFDM channels[C]. IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148704.
    [14] SRINIVAS M and PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656–667. doi: 10.1109/21.286385.
    [15] YUAN Pu. Low PAPR pilot for delay-Doppler domain modulation[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Foshan, China, 2022: 466–471. doi: 10.1109/ICCCWorkshops55477.2022.9896687.
    [16] HASHIM F A and HUSSIEN A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320. doi: 10.1016/j.knosys.2022.108320.
    [17] CAI Jun, HE Xueyun, and SONG Rongfang. Pilot optimization for structured compressive sensing based channel estimation in large-scale MIMO systems with superimposed pilot pattern[J]. Wireless Personal Communications: An International Journal, 2018, 100(3): 977–993. doi: 10.1007/s11277-018-5361-x.
    [18] KIM Y J, SULTAN Q, and CHO Y S. Pilot-based sequence design to overcome a blockage in mmWave cellular systems[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 42–44. doi: 10.1109/ICTC49870.2020.9289488.
    [19] FRANK R, ZADOFF S, and HEIMILLER R. Phase shift pulse codes with good periodic correlation properties (Corresp.)[J]. IRE Transactions on Information Theory, 1962, 8(6): 381–382. doi: 10.1109/TIT.1962.1057786.
    [20] HU Weiwen, LI C P, and CHEN J C. Peak power reduction for pilot-aided OFDM systems with semi-blind detection[J]. IEEE Communications Letters, 2012, 16(7): 1056–1059. doi: 10.1109/LCOMM.2012.050412.120482.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  180
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-07
  • 修回日期:  2025-01-24
  • 网络出版日期:  2025-02-09
  • 刊出日期:  2025-02-28

目录

    /

    返回文章
    返回