| [1] | 
				
					WANG Yi, CHEN Xin, GONG Chao, et al. Non-ellipsoidal infrared group/extended target tracking based on Poisson multi-Bernoulli mixture filter and B-spline[J]. Remote Sensing, 2023, 15(3): 606. doi:  10.3390/rs15030606.
					 | 
			
		
				| [2] | 
				
					GRANSTROM K, BAUM M, and REUTER S. Extended object tracking: Introduction, overview, and applications[J]. Journal of Advances in Information Fusion, 2017, 12(2): 139–174.
					 | 
			
		
				| [3] | 
				
					陈辉, 曾文爱, 连峰, 等. 水平集高斯过程的非星凸形扩展目标跟踪算法[J]. 电子与信息学报, 2023, 45(10): 3786–3795. doi:  10.11999/JEIT220997.CHEN Hui, ZENG Wen’ai, LIAN Feng, et al. Non-star-convex extended target tracking algorithm for level-set gaussian process[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3786–3795. doi:  10.11999/JEIT220997.
					 | 
			
		
				| [4] | 
				
					LI Qinlei, SONG Liping, and ZHANG Yongquan. Multiple extended target tracking by truncated JPDA in a clutter environment[J]. IET Signal Processing, 2021, 15(3): 207–219. doi:  10.1049/sil2.12024.
					 | 
			
		
				| [5] | 
				
					ZHANG Desheng, LI Wujun, YANG Shixing,    et al. Multi-frame track-before-detect for scalable extended target tracking[C]. 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 2022: 1–8. doi:  10.23919/FUSION49751.2022.9841326.
					 | 
			
		
				| [6] | 
				
					GRANSTRÖM K, FATEMI M, and SVENSSON L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 208–225. doi:  10.1109/TAES.2019.2920220.
					 | 
			
		
				| [7] | 
				
					LI Guchong, LI Gang, and HE You. Distributed GGIW-CPHD-based extended target tracking over a sensor network[J]. IEEE Signal Processing Letters, 2022, 29: 842–846. doi:  10.1109/LSP.2022.3158589.
					 | 
			
		
				| [8] | 
				
					MEMON S A, KIM W G, PARK M S, et al. Rauch-Tung-Striebel smoothing linear multi-target tracking in clutter[J]. IEEE Access, 2022, 10: 3007–3016. doi:  10.1109/ACCESS.2021.3134987.
					 | 
			
		
				| [9] | 
				
					GRANSTRÖM K and BRAMSTÅNG J. Bayesian smoothing for the extended object random matrix model[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3732–3742. doi:  10.1109/TSP.2019.2920471.
					 | 
			
		
				| [10] | 
				
					SÄRKKÄ S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press, 2013: 134–164. doi:  10.1017/CBO9781139344203.
					 | 
			
		
				| [11] | 
				
					ZHANG Qichun and ZHOU Yuyang. Recent advances in non-Gaussian stochastic systems control theory and its applications[J]. International Journal of Network Dynamics and Intelligence, 2022, 1(1): 111–119. doi:  10.53941/ijndi0101010.
					 | 
			
		
				| [12] | 
				
					WU Hao, CHEN Shuxin, YANG Binfeng, et al. Robust derivative-free cubature Kalman filter for bearings-only tracking[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1865–1870. doi:  10.2514/1.G001686.
					 | 
			
		
				| [13] | 
				
					HUANG Yulong, ZHANG Yonggang, LI Ning, et al. A novel robust Student's t-based Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1545–1554. doi:  10.1109/TAES.2017.2651684.
					 | 
			
		
				| [14] | 
				
					XU Dingjie, SHEN Chen, and SHEN Feng. A robust particle filtering algorithm with non-Gaussian measurement noise using student-t distribution[J]. IEEE Signal Processing Letters, 2014, 21(1): 30–34. doi:  10.1109/LSP.2013.2289975.
					 | 
			
		
				| [15] | 
				
					KARLGAARD C D. Nonlinear regression Huber-Kalman filtering and fixed-interval smoothing[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(2): 322–330. doi:  10.2514/1.G000799.
					 | 
			
		
				| [16] | 
				
					WANG Hongwei, LI Hongbin, ZHANG Wei, et al. Derivative-free Huber-Kalman smoothing based on alternating minimization[J]. Signal Processing, 2019, 163: 115–122. doi:  10.1016/j.sigpro.2019.05.011.
					 | 
			
		
				| [17] | 
				
					WANG Guoqing, ZHANG Yonggang, and WANG Xiaodong. Maximum correntropy Rauch–Tung–Striebel smoother for nonlinear and non-Gaussian systems[J]. IEEE Transactions on Automatic Control, 2021, 66(3): 1270–1277. doi:  10.1109/TAC.2020.2997315.
					 | 
			
		
				| [18] | 
				
					HE Jiacheng, WANG Hongwei, WANG Gang, et al. Minimum error entropy Rauch–Tung–Striebel smoother[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8901–8914. doi:  10.1109/TAES.2023.3312057.
					 | 
			
		
				| [19] | 
				
					ARAVKIN A Y, BELL B M, BURKE J V, et al. An ℓ1-laplace robust Kalman smoother[J]. IEEE Transactions on Automatic Control, 2011, 56(12): 2898–2911. doi:  10.1109/TAC.2011.2141430.
					 | 
			
		
				| [20] | 
				
					HUANG Yulong, ZHANG Yonggang, LI Ning,    et al. A robust Student's t based cubature filter[C]. 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 9–16.
					 | 
			
		
				| [21] | 
				
					HUANG Yulong, ZHANG Yonggang, LI Ning, et al. Robust student’s t based nonlinear filter and smoother[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2586–2596. doi:  10.1109/TAES.2016.150722.
					 | 
			
		
				| [22] | 
				
					WANG Jian, ZHANG Tao, JIN Bonan, et al. Student’s t-based robust Kalman filter for a SINS/USBL integration navigation strategy[J]. IEEE Sensors Journal, 2020, 20(10): 5540–5553. doi:  10.1109/JSEN.2020.2970766.
					 | 
			
		
				| [23] | 
				
					HUANG Yulong, ZHANG Yonggang, ZHAO Yuxin, et al. Robust Rauch-Tung-Striebel smoothing framework for heavy-tailed and/or skew noises[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 415–441. doi:  10.1109/TAES.2019.2914520.
					 | 
			
		
				| [24] | 
				
					ROTH M, ARDESHIRI T, ÖZKAN E,    et al. Robust Bayesian filtering and smoothing using student's t distribution[EB/OL].https://arxiv.org/abs/1703.02428, 2017.
					 | 
			
		
				| [25] | 
				
					KARTAL S E. Variational smoothing for extended target tracking with random matrices[D]. [Master dissertation], Middle East Technical University, 2022.
					 | 
			
		
				| [26] | 
				
					BAUM M and HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic systems, 2014, 50(1): 149–159. doi:  10.1109/TAES.2013.120107.
					 | 
			
		
				| [27] | 
				
					WAHLSTRÖM N and ÖZKAN E. Extended target tracking using Gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165–4178. doi:  10.1109/TSP.2015.2424194.
					 | 
			
		
				| [28] | 
				
					ZEA A, FAION F, BAUM M, et al. Level-set random hypersurface models for tracking nonconvex extended objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2990–3007. doi:  10.1109/TAES.2016.130704.
					 | 
			
		
				| [29] | 
				
					KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi:  10.1109/TAES.2008.4655362.
					 | 
			
		
				| [30] | 
				
					FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi:  10.1109/TSP.2010.2101064.
					 | 
			
		
				| [31] | 
				
					LAN Jian and LI X R. Extended-object or group-target tracking using random matrix with nonlinear measurements[J]. IEEE Transactions on Signal Processing, 2019, 67(19): 5130–5142. doi:  10.1109/TSP.2019.2935866.
					 | 
			
		
				| [32] | 
				
					陈辉, 王莉, 韩崇昭. 基于随机矩阵建模的Student’s t逆Wishart滤波器[J]. 控制理论与应用, 2022, 39(6): 1088–1097. doi:  10.7641/CTA.2022.11108.CHEN Hui, WANG Li, and HAN Chongzhao. Student’s t inverse Wishart filter based on random matrix modeling[J]. Control Theory & Applications, 2022, 39(6): 1088–1097. doi:  10.7641/CTA.2022.11108.
					 | 
			
		
				| [33] | 
				
					KOTZ S and NADARAJAH S. Multivariate t-Distributions and Their Applications[M]. Cambridge: Cambridge University Press, 2004: 4–68. doi:  10.1017/CBO9780511550683.
					 | 
			
		
				| [34] | 
				
					ROTH M, ÖZKAN E, and GUSTAFSSON F. A Student's t filter for heavy tailed process and measurement noise[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5770–5774. doi:  10.1109/ICASSP.2013.6638770.
					 | 
			
		
				| [35] | 
				
					YANG Shishan, BAUM M, and GRANSTRÖM K. Metrics for performance evaluation of elliptic extended object tracking methods[C]. 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 2016: 523–528. doi:  10.1109/MFI.2016.7849541.
					 | 
			
		
				| [36] | 
				
					GIVENS C R and SHORTT R M. A class of Wasserstein metrics for probability distributions[J]. Michigan Mathematical Journal, 1984, 31(2): 231–240. doi:  10.1307/mmj/1029003026.
					 | 
			
		
				| [37] | 
				
					HARRIS C and STEPHENS M. A combined corner and edge detector[C]. Alvey Vision Conference, Manchester, UK, 1988: 23.1–23.6. doi:  10.5244/C.2.23.
					 | 
			
		
				| [38] | 
				
					CHEN Shuhan, ZHONG Shengwei, XUE Bai, et al. Iterative scale-invariant feature transform for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3244–3265. doi:  10.1109/TGRS.2020.3008609.
					 | 
			
		
				| [39] | 
				
					TUNCER B and ÖZKAN E. Random matrix based extended target tracking with orientation: A new model and inference[J]. IEEE Transactions on Signal Processing, 2021, 69: 1910–1923. doi:  10.1109/TSP.2021.3065136.
					 |