Citation: | ZHANG Pengfei, CHENG Jun, ZHANG Zhikun, FANG Xianjin, SUN Li, WANG Jie, JIANG Rong. Fuzzy C-Means Clustering Algorithm Based on Mixed Noise-aware under Local Differential Privacy[J]. Journal of Electronics & Information Technology, 2025, 47(3): 739-757. doi: 10.11999/JEIT241067 |
[1] |
MISTRY H K, MAVANI C, GOSWAMI A, et al. The impact of cloud computing and AI on industry dynamics and competition[J]. Educational Administration: Theory and Practice, 2024, 30(7): 797–804. doi: 10.53555/kuey.v30i7.6851.
|
[2] |
常璐瑶, 牛新征, 罗涛, 等. 基于子博弈完美均衡的启发式聚类算法[J]. 电子学报, 2024, 52(3): 740–750. doi: 10.12263/DZXB.20221206.
CHANG Luyao, NIU Xinzheng, LUO Tao, et al. Heuristic clustering algorithm based on sub-game perfect equilibrium[J]. Acta Electronica Sinica, 2024, 52(3): 740–750. doi: 10.12263/DZXB.20221206.
|
[3] |
黄鹤, 李文龙, 杨澜, 等. 跳跃跟踪SSA交叉迭代AP聚类算法[J]. 电子学报, 2024, 52(3): 977–990. doi: 10.12263/DZXB.20220209.
HUANG He, LI Wenlong, YANG Lan, et al. Jump tracking SSA hybrid iterative AP clustering algorithm[J]. Acta Electronica Sinica, 2024, 52(3): 977–990. doi: 10.12263/DZXB.20220209.
|
[4] |
张强, 叶阿勇, 叶帼华, 等. 最优聚类的k-匿名数据隐私保护机制[J]. 计算机研究与发展, 2022, 59(7): 1625–1635. doi: 10.7544/issn1000-1239.20210117.
ZHANG Qiang, YE Ayong, YE Guohua, et al. k-Anonymous data privacy protection mechanism based on optimal clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1625–1635. doi: 10.7544/issn1000-1239.20210117.
|
[5] |
LIN Wanyu, LI Baochun, and WANG Cong. Towards private learning on decentralized graphs with local differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2936–2946. doi: 10.1109/TIFS.2022.3198283.
|
[6] |
傅培旺, 丁红发, 刘海, 等. 基于本地差分隐私的分布式图统计采集算法[J]. 计算机研究与发展, 2024, 61(7): 1643–1669. doi: 10.7544/issn1000-1239.202330628.
FU Peiwang, DING Hongfa, LIU Hai, et al. Statistics collecting algorithms of distributed graph via local differential privacy[J]. Journal of Computer Research and Development, 2024, 61(7): 1643–1669. doi: 10.7544/issn1000-1239.202330628.
|
[7] |
李宗维, 孔德潮, 牛媛争, 等. 基于人工智能和区块链融合的隐私保护技术研究综述[J]. 信息安全研究, 2023, 9(6): 557–565. doi: 10.12379/j.issn.2096-1057.2023.06.08.
LI Zongwei, KONG Dechao, NIU Yuanzheng, et al. Towards a privacy-preserving research for AI and blockchain integration[J]. Journal of Information Security Research, 2023, 9(6): 557–565. doi: 10.12379/j.issn.2096-1057.2023.06.08.
|
[8] |
LUO Yuling, WANG Zhangrui, ZHANG Shunsheng, et al. Efficient-secure k-means clustering guaranteeing personalized local differential privacy[C]. 22nd International Conference on Algorithms and Architectures for Parallel Processing, Copenhagen, Denmark, 2023: 660–675. doi: 10.1007/978-3-031-22677-9_35.
|
[9] |
张少波, 原刘杰, 毛新军, 等. 基于本地差分隐私的K-modes聚类数据隐私保护方法[J]. 电子学报, 2022, 50(9): 2181–2188. doi: 10.12263/DZXB.20201374.
ZHANG Shaobo, YUAN Liujie, MAO Xinjun, et al. Privacy protection method for K-modes clustering data with local differential privacy[J]. Acta Electronica Sinica, 2022, 50(9): 2181–2188. doi: 10.12263/DZXB.20201374.
|
[10] |
XIA Chang, HUA Jingyu, TONG Wei, et al. Distributed K-Means clustering guaranteeing local differential privacy[J]. Computers & Security, 2020, 90: 101699. doi: 10.1016/j.cose.2019.101699.
|
[11] |
LIN Aixin and MA Xuebin. PU_Bpub: High-dimensional data release mechanism based on spectral clustering with local differential privacy[C]. 17th International Conference on Wireless Algorithms, Systems, and Applications, Dalian, China, 2022: 572–581. doi: 10.1007/978-3-031-19214-2_48.
|
[12] |
张国鹏, 陈学斌, 王豪石, 等. 面向本地差分隐私的K-Prototypes聚类方法[J]. 计算机应用, 2022, 42(12): 3813–3821. doi: 10.11772/j.issn.1001-9081.2021101724.
ZHANG Guopeng, CHEN Xuebin, WANG Haoshi, et al. K-Prototypes clustering method for local differential privacy[J]. Journal of Computer Applications, 2022, 42(12): 3813–3821. doi: 10.11772/j.issn.1001-9081.2021101724.
|
[13] |
LI Weiqing, CHEN Hongyu, ZHAO Ruifeng, et al. A federated recommendation system based on local differential privacy clustering[C]. 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, USA, 2021: 364–369. doi: 10.1109/SWC50871.2021.00056.
|
[14] |
LI Yong, SONG Xiao, TU Yuchun, et al. GAPBAS: Genetic algorithm-based privacy budget allocation strategy in differential privacy K-means clustering algorithm[J]. Computers & Security, 2024, 139: 103697. doi: 10.1016/j.cose.2023.103697.
|
[15] |
LIU Chao, ZHI Zhaolong, ZHAO Weinan, et al. Research on local fingerprint image differential privacy protection method based on clustering algorithm and regression algorithm segmentation image[J]. IEEE Access, 2024, 12: 27127–27146. doi: 10.1109/ACCESS.2024.3363494.
|
[16] |
石江南, 彭长根, 谭伟杰. Spark框架下支持差分隐私保护的K-means++聚类方法[J]. 信息安全研究, 2024, 10(8): 712–718. doi: 10.12379/j.issn.2096-1057.2024.08.04.
SHI Jiangnan, PENG Changgen, and TAN Weijie. K-means++ clustering method supporting differential privacy protection in spark framework[J]. Journal of Information Security Research, 2024, 10(8): 712–718. doi: 10.12379/j.issn.2096-1057.2024.08.04.
|
[17] |
WU Fuyu, DU Mingjing, and ZHI Qiang. Density-based clustering with differential privacy[J]. Information Sciences, 2024, 681: 121211. doi: 10.1016/j.ins.2024.121211.
|
[18] |
FANG Shuhui, WAN Xuejun, WANG Jun, et al. HiDS Data clustering algorithm based on differential privacy[C]. 2024 International Conference on Networking and Network Applications (NaNA), Yinchuan, China, 2024: 131–136. doi: 10.1109/NaNA63151.2024.00029.
|
[19] |
DIAA A, HUMPHRIES T, and KERSCHBAUM F. FastLloyd: Federated, accurate, secure, and tunable k-means clustering with differential privacy[EB/OL]. https://arxiv.org/abs/2405.02437, 2024.
|
[20] |
SONG Haina, HAN Xinyu, LV Jie, et al. MPLDS: An integration of CP-ABE and local differential privacy for achieving multiple privacy levels data sharing[J]. Peer-to-Peer Networking and Applications, 2022, 15(1): 369–385. doi: 10.1007/s12083-021-01238-8.
|
[21] |
YANG Wenjun and AL-MASRI E. ULDP: A user-centric local differential privacy optimization method[C]. 2024 IEEE World AI IoT Congress (AIIoT), Seattle, USA, 2024: 0316–0322. doi: 10.1109/AIIoT61789.2024.10579023.
|
[22] |
曾卓, 汪成亮, 马飞. 基于差分隐私的活动模式保护与时空轨迹发布方法[J]. 电子学报, 2023, 51(3): 552–563. doi: 10.12263/DZXB.20210631.
ZENG Zhuo, WANG Chengliang, MA Fei. Differentially private activity pattern and spatial-temporal trajectory publication[J]. Acta Electronica Sinica, 2023, 51(3): 552–563. doi: 10.12263/DZXB.20210631.
|
[23] |
HERNANDEZ-MATAMOROS A and KIKUCHI H. Comparative analysis of local differential privacy schemes in healthcare datasets[J]. Applied Sciences, 2024, 14(7): 2864. doi: 10.3390/app14072864.
|
[24] |
DU Minxin, YUE Xiang, CHOW S S M, et al. Sanitizing sentence embeddings (and labels) for local differential privacy[C]. Proceedings of the ACM Web Conference 2023, New York, USA, 2023: 2349–2359. doi: 10.1145/3543507.3583512.
|
[25] |
YANG Mengmeng, GUO Taolin, ZHU Tianqing, et al. Local differential privacy and its applications: A comprehensive survey[J]. Computer Standards & Interfaces, 2024, 89: 103827. doi: 10.1016/j.csi.2023.103827.
|
[26] |
KRASNOV D, DAVIS D, MALOTT K, et al. Fuzzy C-means clustering: A review of applications in breast cancer detection[J]. Entropy, 2023, 25(7): 1021. doi: 10.3390/e25071021.
|
[27] |
ALI N A, EL ABBASSI A, and BOUATTANE O. Performance evaluation of spatial fuzzy C-means clustering algorithm on GPU for image segmentation[J]. Multimedia Tools and Applications, 2023, 82(5): 6787–6805. doi: 10.1007/s11042-022-13635-z.
|
[28] |
徐久成, 侯钦臣, 瞿康林, 等. 面向时间序列的鲁棒性半监督模糊C均值聚类[J]. 计算机工程与应用, 2023, 59(8): 73–80. doi: 10.3778/j.issn.1002-8331.2207-0445.
XU Jiucheng, HOU Qinchen, QU Kanglin, et al. Robust semi-supervised fuzzy C-means clustering for time series[J]. Computer Engineering and Applications, 2023, 59(8): 73–80. doi: 10.3778/j.issn.1002-8331.2207-0445.
|
[29] |
ARORA J, TUSHIR M, and DADHWAL S K. A new suppression-based possibilistic fuzzy c-means clustering algorithm[J]. EAI Endorsed Transactions on Scalable Information Systems, 2023, 10(3): e3. doi: 10.4108/eetsis.v10i3.2057.
|
[30] |
FANG Siguo, HUANG Dong, CAI Xiaosha, et al. Efficient multi-view clustering via unified and discrete bipartite graph learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 11436–11447. doi: 10.1109/TNNLS.2023.3261460.
|
[31] |
JAEGER A and BANKS D. Cluster analysis: A modern statistical review[J]. WIREs Computational Statistics, 2023, 15(3): e1597. doi: 10.1002/wics.1597.
|
[32] |
BESHARATNIA F, TALEBPOUR A, and ALIAKBARY S. An improved grey wolves optimization algorithm for dynamic community detection and data clustering[J]. Applied Artificial Intelligence, 2022, 36(1): 2012000. doi: 10.1080/08839514.2021.2012000.
|
[33] |
ALEMAZKOOR N, TOOTKABONI M, NATEGHI R, et al. Smart-meter big data for load forecasting: An alternative approach to clustering[J]. IEEE Access, 2022, 10: 8377–8387. doi: 10.1109/ACCESS.2022.3142680.
|
[34] |
ZHAO Wenhao, MA Jin, LIU Qiyuan, et al. Comparison and application of SOFM, fuzzy c-means and k-means clustering algorithms for natural soil environment regionalization in China[J]. Environmental Research, 2023, 216: 114519. doi: 10.1016/j.envres.2022.114519.
|
[35] |
葛丽娜, 陈圆圆, 王捷, 等. 改进的密度峰值聚类算法的差分隐私保护方案[J]. 郑州大学学报: 工学版, 2023, 44(6): 19–24. doi: 10.13705/j.issn.1671-6833.2023.03.010.
GE Lina, CHEN Yuanyuan, WANG Jie, et al. Differential privacy protection scheme of adaptive clustering by fast search and find of density peaks[J]. Journal of Zhengzhou University: Engineering Science, 2023, 44(6): 19–24. doi: 10.13705/j.issn.1671-6833.2023.03.010.
|
[36] |
CHEN Hua, ZHOU Yuan, MEI Kehui, et al. A new density peak clustering algorithm with adaptive clustering center based on differential privacy[J]. IEEE Access, 2023, 11: 1418–1431. doi: 10.1109/ACCESS.2022.3233196.
|