Citation: | LU Yin, LIU Jinzhi, ZHANG Min. A Model-Assisted Federated Reinforcement Learning Method for Multi-UAV Path Planning[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1368-1380. doi: 10.11999/JEIT241055 |
[1] |
WEI Zhiqing, ZHU Mingyue, ZHANG Ning, et al. UAV-assisted data collection for Internet of Things: A survey[J]. IEEE Internet of Things Journal, 2022, 9(17): 15460–15483. doi: 10.1109/JIOT.2022.3176903.
|
[2] |
CHENG Zhekun, ZHAO Liangyu, and SHI Zhongjiao. Decentralized multi-UAV path planning based on two-layer coordinative framework for formation rendezvous[J]. IEEE Access, 2022, 10: 45695–45708. doi: 10.1109/ACCESS.2022.3170583.
|
[3] |
ZHENG Jibin, DING Minghui, SUN Lu, et al. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-UAV cooperative area search[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8): 8290–8303. doi: 10.1109/TITS.2023.3258482.
|
[4] |
LIU Zhihong, WANG Xiangke, SHEN Lincheng, et al. Mission-oriented miniature fixed-wing UAV swarms: A multilayered and distributed architecture[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1588–1602. doi: 10.1109/TSMC.2020.3033935.
|
[5] |
VELICHKO N A. Distributed multi-agent reinforcement learning based on feudal networks[C]. 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russian Federation, 2024: 1–5. doi: 10.1109/REEPE60449.2024.10479775.
|
[6] |
LIN Mengting, LI Bin, ZHOU Bin, et al. Distributed stochastic model predictive control for heterogeneous UAV swarm[J]. IEEE Transactions on Industrial Electronics, 2024: 1–11. doi: 10.1109/TIE.2024.3508055.
|
[7] |
WANG Xu, WANG Sen, LIANG Xingxing, et al. Deep reinforcement learning: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5064–5078. doi: 10.1109/TNNLS.2022.3207346.
|
[8] |
WESTHEIDER J, RÜCKIN J, and POPOVIĆ M. Multi-UAV adaptive path planning using deep reinforcement learning[C]. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, USA, 2023: 649–656. doi: 10.1109/IROS55552.2023.10342516.
|
[9] |
PUENTE-CASTRO A, RIVERO D, PEDROSA E, et al. Q-learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments[J]. Expert Systems with Applications, 2024, 235: 121240. doi: 10.1016/j.eswa.2023.121240.
|
[10] |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1861–1870.
|
[11] |
LOWE R, WU Yi, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6382–6393.
|
[12] |
FOERSTER J N, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 363. doi: 10.1609/aaai.v32i1.11794.
|
[13] |
MAHAJAN A, RASHID T, SAMVELYAN M, et al. MAVEN: Multi-agent variational exploration[C]. The 33rd International Conference on Neural Information Processing Systems, 2019: 684.
|
[14] |
RASHID T, SAMVELYAN M, DE WITT C S, et al. Monotonic value function factorisation for deep multi-agent reinforcement learning[J]. The Journal of Machine Learning Research, 2020, 21(1): 178.
|
[15] |
LYU Lingjuan, YU Han, MA Xingjun, et al. Privacy and robustness in federated learning: Attacks and defenses[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 8726–8746. doi: 10.1109/TNNLS.2022.3216981.
|
[16] |
WANG Tianshun, HUANG Xumin, WU Yuan, et al. UAV swarm-assisted two-tier hierarchical federated learning[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 943–956. doi: 10.1109/TNSE.2023.3311024.
|
[17] |
HU Chen, REN Hanchi, DENG Jingjing, et al. Distributed learning for UAV swarms[J]. arXiv preprint arXiv: 2410.15882, 2024. doi: 10.48550/arXiv.2410.15882.
|
[18] |
TONG Ziheng, WANG Jingjing, HOU Xiangwang, et al. Blockchain-based trustworthy and efficient hierarchical federated learning for UAV-enabled IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(21): 34270–34282. doi: 10.1109/JIOT.2024.3370964.
|
[19] |
FIROUZJAEI H M, MOGHADDAM J Z, and ARDEBILIPOUR M. Delay optimization of a federated learning-based UAV-aided IoT network[J]. arXiv preprint arXiv: 2502.06284, 2025. doi: 10.48550/arXiv.2502.06284.
|
[20] |
WANG Pengfei, YANG Hao, HAN Guangjie, et al. Decentralized navigation with heterogeneous federated reinforcement learning for UAV-enabled mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 13621–13638. doi: 10.1109/TMC.2024.3439696.
|
[21] |
ESRAFILIAN O, BAYERLEIN H, and GESBERT D. Model-aided deep reinforcement learning for sample-efficient UAV trajectory design in IoT networks[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685774.
|
[22] |
CHEN Jichao, ESRAFILIAN O, BAYERLEIN H, et al. Model-aided federated reinforcement learning for multi-UAV trajectory planning in IoT networks[C]. 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023: 818–823. doi: 10.1109/GCWkshps58843.2023.10465088.
|
[23] |
YAN Yan, ZHANG Baoxian, LI Cheng, et al. A novel model-assisted decentralized multi-agent reinforcement learning for joint optimization of hybrid beamforming in massive MIMO mmWave systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 14743–14755. doi: 10.1109/TVT.2023.3280910.
|
[24] |
ZHANG Tuo, FENG Tiantian, ALAM S, et al. GPT-FL: Generative pre-trained model-assisted federated learning[J]. arXiv Preprint arXiv: 2306.02210, 2023. doi: 10.48550/arXiv.2306.02210.
|
[25] |
BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171–1187. doi: 10.1109/OJCOMS.2021.3081996.
|
[26] |
OLIEHOEK F A and AMATO C. A Concise Introduction to Decentralized POMDPs[M]. Cham, Switzerland: Springer, 2016. doi: 10.1007/978-3-319-28929-8.
|
[27] |
ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
|