Citation: | CHEN Zhibo, GUO Daoxing. A Localization Algorithm for Multiple Radiation Sources in Low-altitude Intelligent Networks Based on Sparse Tensor Completion and Density Peaks Clustering[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1310-1321. doi: 10.11999/JEIT241050 |
[1] |
吴启晖, 董超, 贾子晔, 等. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.
WU Qihui, DONG Chao, JIA Ziye, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.
|
[2] |
杨宁, 胡景明, 张邦宁, 等. 低空智联网中基于多质心OpenMax的无人机开集识别方法[J]. 数据采集与处理, 2024, 39(1): 60–70. doi: 10.16337/j.1004-9037.2024.01.006.
YANG Ning, HU Jingming, ZHANG Bangning, et al. Open set identification method for unmanned aerial vehicles based on multicenter OpenMax in low-altitude intelligent network[J]. Journal of Data Acquisition and Processing, 2024, 39(1): 60–70. doi: 10.16337/j.1004-9037.2024.01.006.
|
[3] |
乐煜炜, 江锐, 江毅恒, 等. 区块链增强的低空智联网可信协作架构及集群构建策略[J]. 数据采集与处理, 2024, 39(1): 71–82. doi: 10.16337/j.1004-9037.2024.01.007.
LE Yuwei, JIANG Rui, JIANG Yiheng, et al. Blockchain-enhanced trustworthy collaboration architecture and cluster-forming strategy for low-altitude intelligent network[J]. Journal of Data Acquisition and Processing, 2024, 39(1): 71–82. doi: 10.16337/j.1004-9037.2024.01.007.
|
[4] |
董超, 经宇骞, 屈毓锛, 等. 面向低空智联网频谱认知与决策的云边端融合体系架构[J]. 通信学报, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
DONG Chao, JING Yuqian, QU Yuben, et al. Cloud-edge-device fusion architecture oriented to spectrum cognition and decision in low altitude intelligence network[J]. Journal on Communications, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
|
[5] |
丁国如, 孙佳琛, 王海超, 等. 复杂电磁环境下频谱智能管控技术探讨[J]. 航空学报, 2021, 42(4): 524750. doi: 10.7527/S1000-6893.2020.24750.
DING Guoru, SUN Jiachen, WANG Haichao, et al. Discussion on technologies for intelligent spectrum management and control under complex electromagnetic environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524750. doi: 10.7527/S1000-6893.2020.24750.
|
[6] |
PAU G, ARENA F, GEBREMARIAM Y E, et al. Bluetooth 5.1: An analysis of direction finding capability for high-precision location services[J]. Sensors, 2021, 21(11): 3589. doi: 10.3390/s21113589.
|
[7] |
MAKKI A, SIDDIG A, SAAD M, et al. Indoor localization using 802.11 time differences of arrival[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(3): 614–623. doi: 10.1109/TIM.2015.2506239.
|
[8] |
LU Zhiyu, BA Bin, WANG Jianhui, et al. A direct position determination method with combined TDOA and FDOA based on particle filter[J]. Chinese Journal of Aeronautics, 2018, 31(1): 161–168. doi: 10.1016/j.cja.2017.11.007.
|
[9] |
LIU Chen, FANG Dingyi, YANG Zhe, et al. RSS distribution-based passive localization and its application in sensor networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2883–2895. doi: 10.1109/TWC.2015.2512861.
|
[10] |
PINKAM N, JEONG S, and CHONG N Y. Exploration of a group of mobile robots for multiple radiation sources estimation[C]. 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Tokyo, Japan, 2016: 199–206. doi: 10.1109/IRIS.2016.8066091.
|
[11] |
BAI Erwei, YOSIEF K, DASGUPTA S, et al. The maximum likelihood estimate for radiation source localization: Initializing an iterative search[C]. 53rd IEEE Conference on Decision and Control, Los Angeles, USA, 2014: 277–282. doi: 10.1109/CDC.2014.7039394.
|
[12] |
ZUBOW A, BAYHAN S, GAWŁOWICZ P, et al. DeepTxFinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing[C]. 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, USA, 2020: 1–8. doi: 10.1109/ICCCN49398.2020.9209727.
|
[13] |
MITCHELL F, BASET A, PATWARI N, et al. Deep learning-based localization in limited data regimes[C]. The 2022 ACM Workshop on Wireless Security and Machine Learning, San Antonio, USA, 2022: 15–20. doi: 10.1145/3522783.3529529.
|
[14] |
刘金帆, 沈哲贤, 常超. 一种基于电磁态势数据聚类的辐射源定位算法[J]. 电讯技术, 2023, 63(12): 1847–1854. doi: 10.20079/j.issn.1001-893x.230601002.
LIU Jinfan, SHEN Zhexian, and CHANG Chao. A radiation source localization algorithm based on electromagnetic situation data clustering[J]. Telecommunication Engineering, 2023, 63(12): 1847–1854. doi: 10.20079/j.issn.1001-893x.230601002.
|
[15] |
ZHAN Caitao, GHADERIBANEH M, SAHU P, et al. DeepMTL: Deep learning based multiple transmitter localization[C]. 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 2021: 41–50. doi: 10.1109/WoWMoM51794.2021.00017.
|
[16] |
HABASH O, SINGH S, MIZOUNI R, et al. Multiple source localization in IoT: A conditional GAN and image-processing-based framework[J]. IEEE Internet of Things Journal, 2024, 11(4): 7059–7070. doi: 10.1109/JIOT.2023.3313887.
|
[17] |
刘东. 基于无人机频谱认知仪的频谱态势感知研究[D]. [硕士论文], 南京航空航天大学, 2022. doi: 10.27239/d.cnki.gnhhu.2022.001261.
LIU Dong. Research on spectrum situation sensing based on UAV spectrum cognitive instrument[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2022. doi: 10.27239/d.cnki.gnhhu.2022.001261.
|
[18] |
TEGANYA Y and ROMERO D. Deep completion autoencoders for radio map estimation[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1710–1724. doi: 10.1109/TWC.2021.3106154.
|
[19] |
RODRIGUEZ A and LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496. doi: 10.1126/science.1242072.
|
[20] |
谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法[J]. 中国科学: 信息科学, 2016, 46(2): 258–280. doi: 10.1360/N112015-00135.
XIE Juanying, GAO Hongchao, and XIE Weixin. K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset[J]. Scientia Sinica Informationis, 2016, 46(2): 258–280. doi: 10.1360/N112015-00135.
|
[21] |
KIRING A, YEW H T, FARM Y Y, et al. Wi-Fi radio map interpolation with sparse and correlated received signal strength measurements for indoor positioning[C]. 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 2020: 1–5. doi: 10.1109/IICAIET49801.2020.9257857.
|
[22] |
HU Tianyu, HUANG Yang, CHEN Junting, et al. 3D radio map reconstruction based on generative adversarial networks under constrained aircraft trajectories[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8250–8255. doi: 10.1109/TVT.2023.3239556.
|