Citation: | SONG Liubin, GUO Daoxing. Multi-Hop UAV Ad Hoc Network Access Control Protocol: Deep Reinforcement Learning-Based Time Slot Allocation Method[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1356-1367. doi: 10.11999/JEIT241044 |
[1] |
KHAN M A, KUMAR N, MOHSAN S A H, et al. Swarm of UAVs for network management in 6G: A technical review[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 741–761. doi: 10.1109/TNSM.2022.3213370.
|
[2] |
ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
|
[3] |
MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862.
|
[4] |
ARSALAAN A S, FIDA M R, and NGUYEN H X. UAVs relay in emergency communications with strict requirements on quality of information[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4877–4892. doi: 10.1109/TVT.2024.3493206.
|
[5] |
CHEN Jiaxin, CHEN Ping, WU Qihui, et al. A game-theoretic perspective on resource management for large-scale UAV communication networks[J]. China Communications, 2021, 18(1): 70–87. doi: 10.23919/JCC.2021.01.007.
|
[6] |
QI Fei, ZHU Xuetian, MANG Ge, et al. UAV network and IoT in the sky for future smart cities[J]. IEEE Network, 2019, 33(2): 96–101. doi: 10.1109/MNET.2019.1800250.
|
[7] |
NATKANIEC M, KOSEK-SZOTT K, SZOTT S, et al. A survey of medium access mechanisms for providing QoS in Ad-hoc networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(2): 592–620. doi: 10.1109/SURV.2012.060912.00004.
|
[8] |
BORGONOVO F, CAPONE A, CESANA M, et al. ADHOC MAC: New MAC architecture for Ad hoc networks providing efficient and reliable point-to-point and broadcast services[J]. Wireless Networks, 2004, 10(4): 359–366. doi: 10.1023/B:WINE.0000028540.96160.8a.
|
[9] |
OMAR H A, ZHUANG Weihua, and LI Li. VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs[J]. IEEE Transactions on Mobile Computing, 2013, 12(9): 1724–1736. doi: 10.1109/TMC.2012.142.
|
[10] |
NGUYEN V, DANG D N M, JANG S, et al. E-VeMAC: An enhanced vehicular MAC protocol to mitigate the exposed terminal problem[C]. The 16th Asia-Pacific Network Operations and Management Symposium, Hsinchu, China, 2014: 1–4. doi: 10.1109/APNOMS.2014.6996561.
|
[11] |
ZOU Rui, LIU Zishan, ZHANG Lin, et al. A near collision free reservation based MAC protocol for VANETs[C]. 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014: 1538–1543. doi: 10.1109/WCNC.2014.6952438.
|
[12] |
JIANG Anzhou, MI Zhichao, DONG Chao, et al. CF-MAC: A collision-free MAC protocol for UAVs Ad-hoc networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6. doi: 10.1109/WCNC.2016.7564844.
|
[13] |
CHUA M Y K, YU F R, LI Jun, et al. Medium access control for Unmanned Aerial Vehicle (UAV) Ad-hoc networks with full-duplex radios and multipacket reception capability[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 390–394. doi: 10.1109/TVT.2012.2211905.
|
[14] |
MAO Qian, HU Fei, and HAO Qi. Deep learning for intelligent wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2595–2621. doi: 10.1109/COMST.2018.2846401.
|
[15] |
LIU Xin, SUN Can, YAU K L A, et al. Joint collaborative big spectrum data sensing and reinforcement learning based dynamic spectrum access for cognitive internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(1): 805–815. doi: 10.1109/TITS.2022.3175570.
|
[16] |
ZHANG Xiaohui, CHEN Ze, ZHANG Yinghui, et al. Deep-reinforcement-learning-based distributed dynamic spectrum access in multiuser multichannel cognitive radio internet of things networks[J]. IEEE Internet of Things Journal, 2024, 11(10): 17495–17509. doi: 10.1109/JIOT.2024.3359277.
|
[17] |
邓炳光, 徐成义, 张泰, 等. 基于多智能体深度强化学习的D2D通信资源联合分配方法[J]. 电子与信息学报, 2023, 45(4): 1173–1182. doi: 10.11999/JEIT220231.
DENG Bingguang, XU Chengyi, ZHANG Tai, et al. A joint resource allocation method of D2D communication resources based on multi-agent deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1173–1182. doi: 10.11999/JEIT220231.
|
[18] |
NISIOTI E and THOMOS N. Fast Q-learning for improved finite length performance of irregular repetition slotted ALOHA[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2): 844–857. doi: 10.1109/TCCN.2019.2957224.
|
[19] |
NAPARSTEK O and COHEN K. Deep multi-user reinforcement learning for distributed dynamic spectrum access[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 310–323. doi: 10.1109/TWC.2018.2879433.
|
[20] |
YU Yiding, WANG Taotao, and LIEW S C. Deep-reinforcement learning multiple access for heterogeneous wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1277–1290. doi: 10.1109/JSAC.2019.2904329.
|
[21] |
WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722.
|
[22] |
CUI Qimei, ZHANG Ziyuan, SHI Yanpeng, et al. Dynamic multichannel access based on deep reinforcement learning in distributed wireless networks[J]. IEEE Systems Journal, 2022, 16(4): 5831–5834. doi: 10.1109/JSYST.2021.3134820.
|
[23] |
ZHANG Shuying, NI Zuyao, KUANG Linling, et al. Load-aware distributed resource allocation for MF-TDMA Ad hoc networks: A multi-agent DRL approach[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(6): 4426–4443. doi: 10.1109/TNSE.2022.3201121.
|
[24] |
SOHAIB M, JEONG J, and JEON S W. Dynamic multichannel access via multi-agent reinforcement learning: Throughput and fairness guarantees[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 3994–4008. doi: 10.1109/TWC.2021.3126112.
|
[25] |
LIU Xiaoyu, XU Chi, YU Haibin, et al. Deep reinforcement learning-based multichannel access for industrial wireless networks with dynamic multiuser priority[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 7048–7058. doi: 10.1109/TII.2021.3139349.
|
[26] |
NAEEM F, ADAM N, KADDOUM G, et al. Learning MAC protocols in HetNets: A cooperative multi-agent deep reinforcement learning approach[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571321.
|
[27] |
MIUCCIO L, RIOLO S, BENNIS M, et al. Design of a feasible wireless MAC communication protocol via multi-agent reinforcement learning[C]. 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), Stockholm, Sweden, 2024: 94–100. doi: 10.1109/ICMLCN59089.2024.10624759.
|
[28] |
ZOU Yifei, ZHANG Zuyuan, ZHANG Congwei, et al. A distributed abstract MAC layer for cooperative learning on internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 8972–8983. doi: 10.1109/TITS.2024.3362909.
|
[29] |
唐龙, 王峰. 基于UCDS的战术网络拓扑构建研究[J]. 通信技术, 2015, 48(9): 1037–1043. doi: 10.3969/j.issn.1002-0802.2015.09.011.
TANG Long and WANG Feng. Tactical network topology construction based on UCDS[J]. Communications Technology, 2015, 48(9): 1037–1043. doi: 10.3969/j.issn.1002-0802.2015.09.011.
|
[30] |
王聪, 赵几航, 吴霞, 等. 面向FANET的N-UCDS虚拟骨干网构建方法[J]. 陆军工程大学学报, 2023, 2(1): 55–62. doi: 10.12018/j.issn.2097-0730.20220117001.
WANG Cong, ZHAO Jihang, WU Xia, et al. FANET-oriented construction method of N-UCDS virtual backbone network[J]. Journal of Army Engineering University of PLA, 2023, 2(1): 55–62. doi: 10.12018/j.issn.2097-0730.20220117001.
|