Citation: | ZHAO Xiufeng, WU Meng, SONG Weitao. Bootstrapping Optimization Techniques for the FINAL Fully Homomorphic Encryption Scheme[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2183-2193. doi: 10.11999/JEIT241036 |
[1] |
GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178. doi: 10.1145/1536414.1536440.
|
[2] |
BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. (Leveled) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory (TOCT), 2014, 6(3): 13. doi: 10.1145/2633600.
|
[3] |
BRAKERSKI Z. Fully homomorphic encryption without modulus switching from classical GapSVP[C]. The 32nd Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2012: 868–886. doi: 10.1007/978-3-642-32009-5_50.
|
[4] |
FAN Junfeng and VERCAUTEREN F. Somewhat practical fully homomorphic encryption[EB/OL]. https://eprint.iacr.org/2012/144, 2012.
|
[5] |
GENTRY C, SAHAI A, and WATERS B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[C]. The 33rd Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2013: 75–92. doi: 10.1007/978-3-642-40041-4_5.
|
[6] |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. The 23rd International Conference on the Theory and Applications of Cryptology and Information Security Advances in Cryptology, Hong Kong, China, 2017: 409–437. doi: 10.1007/978-3-319-70694-8_15.
|
[7] |
DUCAS L and MICCIANCIO D. FHEW: Bootstrapping homomorphic encryption in less than a second[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques Advances in Cryptology, Sofia, Bulgaria, 2015: 617–640. doi: 10.1007/978-3-662-46800-5_24.
|
[8] |
CHILLOTTI I, GAMA N, GEORGIEVA M, et al. TFHE: Fast fully homomorphic encryption over the torus[J]. Journal of Cryptology, 2020, 33(1): 34–91. doi: 10.1007/s00145-019-09319-x.
|
[9] |
CARPOV S, IZABACHÈNE M, and MOLLIMARD V. New techniques for multi-value input homomorphic evaluation and applications[C]. The Cryptographers’ Track at the RSA Conference 2019 Topics in Cryptology, San Francisco, USA, 2019: 106–126. doi: 10.1007/978-3-030-12612-4_6.
|
[10] |
CHILLOTTI I, LIGIER D, ORFILA J B, et al. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE[C]. The 27th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology, Singapore, Singapore, 2021: 670–699. doi: 10.1007/978-3-030-92078-4_23.
|
[11] |
GUIMARÃES A, BORIN E, and ARANHA D F. Revisiting the functional bootstrap in TFHE[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021(2): 229–253. doi: 10.46586/tches.v2021.i2.229-253.
|
[12] |
CHEN Hao, CHILLOTTI I, and SONG Y. Multi-key homomorphic encryption from TFHE[C]. The 25th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology, Kobe, Japan, 2019: 446–472. doi: 10.1007/978-3-030-34621-8_16.
|
[13] |
KWAK H, MIN S, and SONG Y. Towards practical multi-key TFHE: Parallelizable, key-compatible, quasi-linear complexity[C]. The 27th IACR International Conference on Practice and Theory of Public-Key Cryptography Public-Key Cryptography, Sydney, Australia, 2024: 354–385. doi: 10.1007/978-3-031-57728-4_12.
|
[14] |
BONTE C, ILIASHENKO I, PARK J, et al. FINAL: Faster FHE instantiated with NTRU and LWE[C]. The 28th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology, Taipei, China, 2022: 188–215. doi: 10.1007/978-3-031-22966-4_7.
|
[15] |
KLUCZNIAK K. NTRU-v-um: Secure fully homomorphic encryption from NTRU with small modulus[C]. The 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 1783–1797. doi: 10.1145/3548606.3560700.
|
[16] |
LEE Y, MICCIANCIO D, KIM A, et al. Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption[C]. The 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Advances in Cryptology, Lyon, France, 2023: 227–256. doi: 10.1007/978-3-031-30620-4_8.
|
[17] |
LEE C, MIN S, SEO J, et al. Faster TFHE bootstrapping with block binary keys[C]. The 2023 ACM Asia Conference on Computer and Communications Security, Melbourne, Australia, 2023: 2–13. doi: 10.1145/3579856.3595804.
|
[18] |
XIANG Binwu, ZHANG Jiang, DENG Yi, et al. Fast blind rotation for bootstrapping FHEs[C]. The 43rd Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2023: 3–36. doi: 10.1007/978-3-031-38551-3_1.
|
[19] |
MA Shihe, HUANG Tairong, WANG Anyu, et al. Accelerating BGV bootstrapping for large p using null polynomials over $ \mathbb{Z}_{p^{e}} $[C]. The 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques Advances in Cryptology, Zurich, Switzerland, 2024: 403–432. doi: 10.1007/978-3-031-58723-8_14.
|
[20] |
WANG Ruida, WEN Yundi, LI Zhihao, et al. Circuit bootstrapping: Faster and smaller[C]. The 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques Advances in Cryptology, Zurich, Switzerland, 2024: 342–372. doi: 10.1007/978-3-031-58723-8_12.
|
[21] |
PEIKERT C. A decade of lattice cryptography[J]. Foundations and Trends® in Theoretical Computer Science, 2016, 10(4): 283–424. doi: 10.1561/0400000074.
|
[22] |
GOLDWASSER S, KALAI Y, PEIKERT C, et al. Robustness of the learning with errors assumption[C]. Proceedings of the Innovations in Computer Science–ICS 2010, Beijing, China, 2010: 230–240.
|
[23] |
ALBRECHT M R. On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL[C]. The 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques Advances in Cryptology, Paris, France, 2017: 103–129. doi: 10.1007/978-3-319-56614-6_4.
|
[24] |
MAY A. How to meet ternary LWE keys[C]. The 41st Annual International Cryptology Conference on Advances in Cryptology, 2021: 701–731. doi: 10.1007/978-3-030-84245-1_24.
|
[25] |
ALBRECHT M R, PLAYER R, and SCOTT S. On the concrete hardness of Learning with Errors[J]. Journal of Mathematical Cryptology, 2015, 9(3): 169–203. doi: 10.1515/jmc-2015-0016.
|
[26] |
CHEN Yuanmi and NGUYEN P Q. BKZ 2.0: Better lattice security estimates[C]. The 17th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology, Seoul, South Korea, 2011: 1–20. doi: 10.1007/978-3-642-25385-0_1.
|
[27] |
GUO Qian and JOHANSSON T. Faster dual lattice attacks for solving LWE with applications to CRYSTALS[C]. The 27th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology, Singapore, Singapore, 2021: 33–62. doi: 10.1007/978-3-030-92068-5_2.
|