Citation: | WANG Wei, SHE Dingchen, WANG Jiaqi, HAN Dairu, JIN Benzhou. Multi-Model Fusion-Based Abnormal Trajectory Correction Method for Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1332-1344. doi: 10.11999/JEIT241026 |
[1] |
陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
|
[2] |
HOSSEIN MOTLAGH N, TALEB T, and AROUK O. Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6): 899–922. doi: 10.1109/jiot.2016.2612119.
|
[3] |
DENG Tianping, XU Xiaohui, ZOU Zhiqing, et al. Multidrone parcel delivery via public vehicles: A joint optimization approach[J]. IEEE Internet of Things Journal, 2024, 11(6): 9312–9323. doi: 10.1109/jiot.2023.3323704.
|
[4] |
杨君一, 李博, 张钦宇. 基于物理层网络编码的无人机中继网络资源优化[J]. 通信学报, 2021, 42(9): 12–20. doi: 10.11959/j.issn.1000−436x.2021172.
YANG Junyi, LI Bo, and ZHANG Qinyu. Resource optimization for UAV relay networks based on physical-layer network coding[J]. Journal on Communications, 2021, 42(9): 12–20. doi: 10.11959/j.issn.1000−436x.2021172.
|
[5] |
WANG Wei, CHENG Nan, LIU Yiliang, et al. Content delivery analysis in cellular networks with aerial caching and mmWAVE backhaul[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4809–4822. doi: 10.1109/tvt.2021.3074991.
|
[6] |
WANG Jiaqi, WANG Wei, ZHOU Bo, et al. Frequency-hopping signal recognition of multiple UAVs with template matching[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 2024: 1698–1702. doi: 10.1109/ICCC62479.2024.10681687.
|
[7] |
聂伟, 戴琪霏, 杨小龙, 等. 基于多维信号特征的无人机探测识别方法[J]. 电子与信息学报, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.
NIE Wei, DAI Qifei, YANG Xiaolong, et al. Unmanned aerial vehicle detection and recognition method based on multi-dimensional signal feature[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.
|
[8] |
毕宿志. 空地协同通信定位一体化无人机应急部署优化[J]. 物联网学报, 2024, 8(0): 1–15. doi: 10.11959/j.issn.2096-3750.2024.00428.
BI Suzhi. Emergency UAV deployment optimization in an integrated air-ground network with joint communication and localization service[J]. Chinese Journal on Internet of Things, 2024, 8(0): 1–15. doi: 10.11959/j.issn.2096-3750.2024.00428.
|
[9] |
聂伟, 文怀志, 谢良波, 等. 一种基于单目视觉的无人机室内定位方法[J]. 电子与信息学报, 2022, 44(3): 906–914. doi: 10.11999/JEIT211328.
NIE Wei, WEN Huaizhi, XIE Liangbo, et al. Indoor localization of UAV using monocular vision[J]. Journal of Electronics & Information Technology, 2022, 44(3): 906–914. doi: 10.11999/JEIT211328.
|
[10] |
PAN Hengchang, WANG Yuanshuo, WANG Wei, et al. Privacy-preserving location authentication for low-altitude UAVs: A blockchain-based approach[J]. Security and Safety, 2024, 3: 2024004. doi: 10.1051/sands/2024004.
|
[11] |
佘丁辰, 王威, 王加琪, 等. 基于收缩自编码器的无人机GPS欺骗攻击协同检测方法[J]. 信号处理, 2024, 40(4): 706–718. doi: 10.16798/j.issn.1003-0530.2024.04.009.
SHE Dingchen, WANG Wei, WANG Jiaqi, et al. Collaborative detection method of UAV GPS spoofing attack based on shrink autoencoder[J]. Journal of Signal Processing, 2024, 40(4): 706–718. doi: 10.16798/j.issn.1003-0530.2024.04.009.
|
[12] |
PSIAKI M L and HUMPHREYS T E. GNSS spoofing and detection[J]. Proceedings of the IEEE, 2016, 104(6): 1258–1270. doi: 10.1109/jproc.2016.2526658.
|
[13] |
GUO Yan, WU Meiping, TANG Kanghua, et al. Covert spoofing algorithm of UAV based on GPS/INS-integrated navigation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6557–6564. doi: 10.1109/tvt.2019.2914477.
|
[14] |
YANG Lei, LI Shaobo, ZHANG Yizong, et al. Deep learning-assisted unmanned aerial vehicle flight data anomaly detection: A review[J]. IEEE Sensors Journal, 2024, 24(20): 31681–31695. doi: 10.1109/jsen.2024.3451648.
|
[15] |
HSIAO Y S, WAN Zishen, JIA Tianyu, et al. MAVFI: An end-to-end fault analysis framework with anomaly detection and recovery for micro aerial vehicles[C]. 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023: 1–6. doi: 10.23919/DATE56975.2023.10137246.
|
[16] |
HE Yongfu, PENG Yu, WANG Shaojun, et al. ADMOST: UAV flight data anomaly detection and mitigation via online subspace tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(4): 1035–1044. doi: 10.1109/tim.2018.2863499.
|
[17] |
ZHONG Jie, ZHANG Yujie, WANG Jianyu, et al. Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation[J]. IEEE Transactions on Reliability, 2022, 71(1): 457–468. doi: 10.1109/tr.2021.3134369.
|
[18] |
YANG Lei, LI Shaobo, LI Chuanjiang, et al. Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation[J]. Science China Technological Sciences, 2023, 66(5): 1304–1316. doi: 10.1007/s11431-022-2312-8.
|
[19] |
YANG Lei, LI Shaobo, LI Chuanjiang, et al. Data-driven multivariate regression-based anomaly detection and recovery of unmanned aerial vehicle flight data[J]. Journal of Computational Design and Engineering, 2024, 11(2): 176–193. doi: 10.1093/jcde/qwae023.
|
[20] |
WANG Benkuan, LIU Datong, PENG Yu, et al. Multivariate regression-based fault detection and recovery of UAV flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3527–3537. doi: 10.1109/tim.2019.2935576.
|
[21] |
石庆研, 岳聚财, 韩萍, 等. 基于LSTM-ARIMA模型的短期航班飞行轨迹预测[J]. 信号处理, 2019, 35(12): 2000–2009. doi: 10.16798/j.issn.1003-0530.2019.12.008.
SHI Qingyan, YUE Jucai, HAN Ping, et al. Short-term flight trajectory prediction based on LSTM-ARIMA Model[J]. Journal of Signal Processing, 2019, 35(12): 2000–2009. doi: 10.16798/j.issn.1003-0530.2019.12.008.
|
[22] |
KAREVAN Z and SUYKENS J A K. Transductive LSTM for time-series prediction: An application to weather forecasting[J]. Neural Networks, 2020, 125: 1–9. doi: 10.1016/j.neunet.2019.12.030.
|
[23] |
ZHAO Huachuan, WANG Guochen, XIA Xiuwei, et al. Dynamic positional attention fusion (DPAF): Adaptive encoding and weighted attention for ship motion attitude prediction[J]. IEEE Sensors Journal, 2024, 24(13): 21679–21693. doi: 10.1109/jsen.2024.3399775.
|
[24] |
ANDAYANI F, THENG L B, TSUN M T, et al. Hybrid LSTM-transformer model for emotion recognition from speech audio files[J]. IEEE Access, 2022, 10: 36018–36027. doi: 10.1109/access.2022.3163856.
|
[25] |
TANG Song, LI Chuang, ZHANG Pu, et al. Swinlstm: Improving spatiotemporal prediction accuracy using Swin transformer and LSTM[C]. The 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 13424–13433. doi: 10.1109/ICCV51070.2023.01239.
|
[26] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[27] |
WANG Jingyu, ZHANG Lu, LI Xueqing, et al. ULSeq-TA: Ultra-long sequence attention fusion transformer accelerator supporting grouped sparse softmax and dual-path sparse LayerNorm[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(3): 892–905. doi: 10.1109/tcad.2023.3329039.
|
[28] |
REN Qianqian, LI Yang, and LIU Yong. Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting[J]. Expert Systems with Applications, 2023, 227: 120203. doi: 10.1016/j.eswa.2023.120203.
|
[29] |
DONG Gaochen and CHEN W. Blockwise compression of transformer-based models without retraining[J]. Neural Networks, 2024, 171: 423–428. doi: 10.1016/j.neunet.2023.12.001.
|
[30] |
WHELAN J, SANGARAPILLAI T, MINAWI O, et al. Novelty-based intrusion detection of sensor attacks on unmanned aerial vehicles[C]. The 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Alicante, Spain, 2020: 23–28. doi: 10.1145/3416013.3426446.
|
[31] |
ZHANG Honghai, YAN Yongjie, LI Shan, et al. UAV behavior-intention estimation method based on 4-D flight-trajectory prediction[J]. Sustainability, 2021, 13(22): 12528. doi: 10.3390/su132212528.
|
[32] |
WANG Shengdong, LIU Zhenbao, JIA Zhen, et al. Fault detection for UAVs with spatial-temporal learning on multivariate flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2529517. doi: 10.1109/tim.2024.3440387.
|
[33] |
HUANG Hongliang, ZHANG Hai, and JIANG Liuyang. An optimal fusion method of multiple inertial measurement units based on measurement noise variance estimation[J]. IEEE Sensors Journal, 2023, 23(3): 2693–2706. doi: 10.1109/jsen.2022.3229475.
|