Citation: | YI Qingwu, HUANG Lu, YU Baoguo, LIAO Guisheng. Methods for Enhancing Positioning Reliability in Indoor and Underground Satellite-shielded Environments[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1529-1542. doi: 10.11999/JEIT240870 |
[1] |
BI Jingxue, ZHAO Mwiqi, YAO Guobiao, et al. PSOSVRPos: WiFi indoor positioning using SVR optimized by PSO[J]. Expert Systems with Applications, 2023, 222: 119778. doi: 10.1016/j.eswa.2023.119778.
|
[2] |
CAO Hongji, WANG Yunjia, BI Jingxue, et al. LOS compensation and trusted NLOS recognition assisted WiFi RTT indoor positioning algorithm[J]. Expert Systems with Applications, 2024, 243: 122867. doi: 10.1016/j.eswa.2023.122867.
|
[3] |
ASSAYAG Y, OLIVEIRA H, SOUTO E, et al. Adaptive path loss model for BLE indoor positioning system[J]. IEEE Internet of Things Journal, 2023, 10(14): 12898–12907. doi: 10.1109/JIOT.2023.3253660.
|
[4] |
ASSAYAG Y, OLIVEIRA H, SOUTO E, et al. A model-based BLE indoor positioning system using particle swarm optimization[J]. IEEE Sensors Journal, 2024, 24(5): 6898–6908. doi: 10.1109/JSEN.2024.3352535.
|
[5] |
ZHANG Heng and PAN Shuguo. LSOS: An FG position method based on group phase ranging ambiguity estimation of BeiDou pseudolite[J]. Remote Sensing, 2023, 15(7): 1924. doi: 10.3390/rs15071924.
|
[6] |
YU Baoguo, HUANG Lu, BAO Yachuan, et al. Research status and trends of indoor positioning and navigation technology in China[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 87–101. doi: 10.11947/j.JGGS.2023.0309.
|
[7] |
LIANG Xiaohu, PAN Shuguo, YU Baohuo, et al. A pseudo-satellite fingerprint localization method based on discriminative deep belief networks[J]. Remote Sensing, 2024, 16(8): 1430. doi: 10.3390/rs16081430.
|
[8] |
QU Junwei. A review of UWB indoor positioning[J]. Journal of Physics: Conference Series, 2023, 2669(1): 012003. doi: 10.1088/1742-6596/2669/1/012003.
|
[9] |
SANTORO L, NARDELLO M, BRUNELLI D, et al. UWB-based indoor positioning system with infinite scalability[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1005711. doi: 10.1109/TIM.2023.3282299.
|
[10] |
LIU Zhaoliang, CHEN Liang, ZHOU Xin, et al. Machine learning for time-of-arrival estimation with 5G signals in indoor positioning[J]. IEEE Internet of Things Journal, 2023, 10(11): 9782–9795. doi: 10.1109/JIOT.2023.3234123.
|
[11] |
YANG Shan, ZHANG Qiyuan, HU Longxing, et al. 5G indoor positioning error correction based on 5G-PECNN[J]. Sensors, 2024, 24(6): 1949. doi: 10.3390/s24061949.
|
[12] |
GAO Kaixuan, WANG Huiqiang, LV Hongwu, et al. Localization-oriented digital twinning in 6G: A new indoor-positioning paradigm and proof-of-concept[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 10473–10486. doi: 10.1109/TWC.2024.3373034.
|
[13] |
CAROTENUTO R, IERO D, and MERENDA M. A method for correcting signal aberrations in ultrasonic indoor positioning[J]. Sensors, 2024, 24(6): 2017. doi: 10.3390/s24062017.
|
[14] |
DELABIE D, WILDING T, VAN DER PERRE L, et al. Anchor layout optimization for ultrasonic indoor positioning using swarm intelligence[C]. 2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nuremberg, Germany, 2023: 1–6. doi: 10.1109/IPIN57070.2023.10332490.
|
[15] |
SANDAMINI C, MADURANGA M W P, TILWARI V, et al. A review of indoor positioning systems for UAV localization with machine learning algorithms[J]. Electronics, 2023, 12(7): 1533. doi: 10.3390/electronics12071533.
|
[16] |
SHI Tianwei, CHANG Guangming, QIANG Jiaofeng, et al. Brain computer interface system based on monocular vision and motor imagery for UAV indoor space target searching[J]. Biomedical Signal Processing and Control, 2023, 79: 104114. doi: 10.1016/j.bspc.2022.104114.
|
[17] |
WU Yuan, CHEN Ruizhi, FU Wenju, et al. CWIWD-IPS: A crowdsensing/walk-surveying inertial/Wi-Fi data-driven indoor positioning system[J]. IEEE Internet of Things Journal, 2023, 10(10): 8786–8798. doi: 10.1109/JIOT.2022.3232817.
|
[18] |
HAN Chunhua, XUE Shunbiao, LONG Li, et al. Research on inertial navigation and environmental correction indoor ultra-wideband ranging and positioning methods[J]. Sensors, 2024, 24(1): 261. doi: 10.3390/s24010261.
|
[19] |
KUO Y H and WU E H K. Intelligent geomagnetic indoor positioning system[J]. Electronics, 2023, 12(10): 2227. doi: 10.3390/electronics12102227.
|
[20] |
KIM H, LEE C, KIM H, et al. Application of geomagnetic field-based indoor positioning technology in the formwork stage[C]. The Korean Institute of Building Construction Conference, 2023: 213–214.
|
[21] |
WANG Tianfa, HAN Litao, KONG Qiaoli, et al. An improved particle filter indoor fusion positioning approach based on Wi-Fi/PDR/geomagnetic field[J]. Defence Technology, 2024, 32: 443–458. doi: 10.1016/j.dt.2023.03.021.
|
[22] |
JING Hao, GAO Yang, SHAHBEIGI S, et al. Integrity monitoring of GNSS/INS based positioning systems for autonomous vehicles: State-of-the-art and open challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14166–14187. doi: 10.1109/TITS.2022.3149373.
|
[23] |
ZHU Ni, BETAILLE D, MARAIS J, et al. GNSS integrity monitoring schemes for terrestrial applications in harsh signal environments[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(3): 81–91. doi: 10.1109/MITS.2020.2994076.
|
[24] |
STALLO C, NERI A, SALVATORI P, et al. GNSS integrity monitoring for rail applications: Two-tiers method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 55(4): 1850–1863. doi: 10.1109/TAES.2018.2876735.
|
[25] |
BIJJAHALLI S and SABATINI R. A high-integrity and low-cost navigation system for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 22(1): 356–369. doi: 10.1109/TITS.2019.2957876.
|
[26] |
LIAO Maoyou, LIU Jiacheng, MENG Ziyang, et al. A SINS/SAR/GPS fusion positioning system based on sensor credibility evaluations[J]. Remote Sensing, 2021, 13(21): 4463. doi: 10.3390/rs13214463.
|
[27] |
闫伟. 行人室内高维磁场指纹匹配定位系统及其完好性研究[D]. [硕士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001033.
YAN Wei. Research on pedestrian indoor high-dimensional magnetic fingerprint matching positioning system and its integrity[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001033.
|
[28] |
王荣鑫. 视觉惯导融合定位及完好性系统设计[D]. [硕士论文], 厦门大学, 2019.
WANG Rongxin. Visual inertial navigation fusion location and integrity system design[D]. [Master dissertation], Xiamen University, 2019.
|
[29] |
ZHAO Yinzhi, GUO Jiming, ZOU Jingui, et al. A holistic approach to guarantee the reliability of positioning based on carrier phase for indoor pseudolite[J]. Applied Sciences, 2020, 10(4): 1199. doi: 10.3390/app10041199.
|
[30] |
陈瑞, 赵龙, 范紫月. 地形辅助导航多模式综合完好性监测方法[J]. 中国惯性技术学报, 2023, 31(11): 1157–1166. doi: 10.13695/j.cnki.12-1222/o3.2023.11.012.
CHEN Rui, ZHAO Long, and FAN Ziyue. A Multi-mode comprehensive integrity monitoring method for terrain aided navigation[J]. Journal of Chinese Inertial Technology, 2023, 31(11): 1157–1166. doi: 10.13695/j.cnki.12-1222/o3.2023.11.012.
|