Citation: | WANG Chunli, LI Jinxu, GAO Yuxin, WANG Chenming, ZHANG Jiahao. A Short-time Window ElectroEncephaloGram Auditory Attention Decoding Network Based on Multi-dimensional Characteristics of Temporal-spatial-frequency[J]. Journal of Electronics & Information Technology, 2025, 47(3): 814-824. doi: 10.11999/JEIT240867 |
[1] |
CHERRY E C. Some experiments on the recognition of speech, with one and with two ears[J]. The Journal of the Acoustical Society of America, 1953, 25(5): 975–979. doi: 10.1121/1.1907229.
|
[2] |
WANG Deliang. Deep learning reinvents the hearing aid[J]. IEEE Spectrum, 2017, 54(3): 32–37. doi: 10.1109/MSPEC.2017.7864754.
|
[3] |
ZHANG Malu, WU Jibin, CHUA Yansong, et al. MPD-AL: An efficient membrane potential driven aggregate-label learning algorithm for spiking neurons[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 1327–1334. doi: 10.1609/aaai.v33i01.33011327.
|
[4] |
MESGARANI N and CHANG E F. Selective cortical representation of attended speaker in multi-talker speech perception[J]. Nature, 2012, 485(7397): 233–236. doi: 10.1038/nature11020.
|
[5] |
DING Nai and SIMON J Z. Emergence of neural encoding of auditory objects while listening to competing speakers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11854–11859. doi: 10.1073/pnas.1205381109.
|
[6] |
O'SULLIVAN J A, POWER A J, MESGARANI N, et al. Attentional selection in a cocktail party environment can be decoded from single-trial EEG[J]. Cerebral Cortex, 2015, 25(7): 1697–1706. doi: 10.1093/cercor/bht355.
|
[7] |
CASARES A P. The brain of the future and the viability democratic governance: The role of artificial intelligence, cognitive machines, and viable systems[J]. Futrues, 2018, 103(OCT.): 5–16. doi: 10.1016/j.futures.2018.05.002.
|
[8] |
CICCARELLI G, NOLAN M, PERRICONE J, et al. Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods[J]. Scientific Reports, 2019, 9(1): 11538. doi: 10.1038/s41598-019-47795-0.
|
[9] |
FUGLSANG S A, DAU T, and HJORTKJÆR J. Noise-robust cortical tracking of attended speech in real-world acoustic scenes[J]. NeuroImage, 2017, 156: 435–444. doi: 10.1016/j.neuroimage.2017.04.026.
|
[10] |
WONG D D E, FUGLSANG S A, HJORTKJÆR J, et al. A comparison of regularization methods in forward and backward models for auditory attention decoding[J]. Frontiers in Neuroscience, 2018, 12: 531. doi: 10.3389/fnins.2018.00531.
|
[11] |
DE CHEVEIGNÉ A, WONG D D E, DI LIBERTO G M, et al. Decoding the auditory brain with canonical component analysis[J]. NeuroImage, 2018, 172: 206–216. doi: 10.1016/j.neuroimage.2018.01.033.
|
[12] |
DE CHEVEIGNÉ A, DI LIBERTO G M, ARZOUNIAN D, et al. Multiway canonical correlation analysis of brain data[J]. NeuroImage, 2019, 186: 728–740. doi: 10.1016/j.neuroimage.2018.11.026.
|
[13] |
ZWICKE E and FASTL H. Psychoacoustics: Facts and Models[M]. 2nd ed. New York: Springer, 1999.
|
[14] |
VANDECAPPELLE S, DECKERS L, DAS N, et al. EEG-based detection of the locus of auditory attention with convolutional neural networks[J]. eLife, 2021, 10: e56481. doi: 10.7554/eLife.56481.
|
[15] |
CAI Siqi, SU Enze, SONG Yonghao, et al. Low latency auditory attention detection with common spatial pattern analysis of EEG signals[C]. The INTERSPEECH 2020, Shanghai, China, 2020: 2772–2776. doi: 10.21437/Interspeech.2020-2496.
|
[16] |
CAI Siqi, SU Enze, XIE Longhan, et al. EEG-based auditory attention detection via frequency and channel neural attention[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(2): 256–266. doi: 10.1109/THMS.2021.3125283.
|
[17] |
SU Enze, CAI Siqi, XIE Longhan, et al. STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(7): 2233–2242. doi: 10.1109/TBME.2022.3140246.
|
[18] |
JIANG Yifan, CHEN Ning, and JIN Jing. Detecting the locus of auditory attention based on the spectro-spatial-temporal analysis of EEG[J]. Journal of Neural Engineering, 2022, 19(5): 056035. doi: 10.1088/1741-2552/ac975c.
|
[19] |
CAI Siqi, SCHULTZ T, and LI Haizhou. Brain topology modeling with EEG-graphs for auditory spatial attention detection[J]. IEEE Transactions on Biomedical Engineering, 2024, 71(1): 171–182. doi: 10.1109/TBME.2023.3294242.
|
[20] |
XU Xiran, WANG Bo, YAN Yujie, et al. A DenseNet-based method for decoding auditory spatial attention with EEG[C]. The ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, Republic of, 2024: 1946–1950. doi: 10.1109/ICASSP48485.2024.10448013.
|
[21] |
GEIRNAERT S, FRANCART T, and BERTRAND A. Fast EEG-based decoding of the directional focus of auditory attention using common spatial patterns[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1557–1568. doi: 10.1109/TBME.2020.3033446.
|
[22] |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391–5420. doi: 10.1002/hbm.23730.
|
[23] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5): 056013. doi: 10.1088/1741-2552/aace8c.
|
[24] |
RAO Yongming, ZHAO Wenliang, TANG Yansong, et al. HorNet: Efficient high-order spatial interactions with recursive gated convolutions[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 752.
|
[25] |
LIU Yongjin, YU Minjing, ZHAO Guozhen, et al. Real-time movie-induced discrete emotion recognition from EEG signals[J]. IEEE Transactions on Affective Computing, 2018, 9(4): 550–562. doi: 10.1109/TAFFC.2017.2660485.
|
[26] |
CAI Siqi, SUN Pengcheng, SCHULTZ T, et al. Low-latency auditory spatial attention detection based on spectro-spatial features from EEG[C]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Mexico, Mexico, 2021: 5812–5815. doi: 10.1109/EMBC46164.2021.9630902.
|
[27] |
DAS N, FRANCAR T, and BERTRAND A. Auditory attention detection dataset KULeuven (OLD VERSION)[J]. Zenodo, 2019. doi: 10.5281/zenodo.3997352.
|
[28] |
FUGLSANG S A, WONG D D E, and HJORTKJÆR J. EEG and audio dataset for auditory attention decoding[J]. Zenodo, 2018. doi: 10.5281/zenodo.1199011.
|
[29] |
CAI Siqi, LI Jia, YANG Hongmeng, et al. RGCnet: An efficient recursive gated convolutional network for EEG-based auditory attention detection[C]. The 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Sydney, Australia, 2023: 1–4. doi: 10.1109/EMBC40787.2023. 10340432.
|
[30] |
LI Jia, ZHANG Ran, and CAI Siqi. Multi-scale recursive feature interaction for auditory attention detection using EEG signals[C]. 2024 IEEE International Symposium on Biomedical Imaging, Athens, Greece, 2024: 1–5. doi: 10.1109/ISBI56570.2024.10635751.
|
[31] |
NI Qinke, ZHANG Hongyu, FAN Cunhang, et al. DBPNet: Dual-Branch Parallel Network with Temporal-Frequency Fusion for Auditory Attention Detection[C]. Proceedings of the International Joint Conference on Artificial Intelligence, Jeju, South Korea, 2024: 3115–3123. doi: 10.24963/ijcai.2024/345.
|