Citation: | SHAO Hua, WANG Chun, CAO Difei, LI Wei, ZHANG Haijun. Expectation Propagation-based Signal Detection for Differential Spatial Modulation[J]. Journal of Electronics & Information Technology, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840 |
[1] |
ZHANG Zhenyu, GONG Caihong, DONG Yuanyuan, et al. Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2006–2018. doi: 10.1109/TWC.2021.3108852.
|
[2] |
MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228–2241. doi: 10.1109/TVT.2007.912136.
|
[3] |
JEGANATHAN J, GHRAYEB A, and SZCZECINSKI L. Spatial modulation: Optimal detection and performance analysis[J]. IEEE Communications Letters, 2008, 12(8): 545–547. doi: 10.1109/LCOMM.2008.080739.
|
[4] |
GUO Shuaishuai and QU Kaiqian. Beamspace modulation for near field capacity improvement in XL-MIMO communications[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1434–1438. doi: 10.1109/LWC.2023.3277666.
|
[5] |
HE Longzhuang, WANG Jintao, and SONG Jian. Spatial modulation for more spatial multiplexing: RF-chain-limited generalized spatial modulation aided MM-wave MIMO with hybrid precoding[J]. IEEE Transactions on Communications, 2018, 66(3): 986–998. doi: 10.1109/TCOMM.2017.2773543.
|
[6] |
MESLEH R, IKKI S S, and AGGOUNE H M. Quadrature spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2738–2742. doi: 10.1109/TVT.2014.2344036.
|
[7] |
YOUNIS A, MESLEH R, and HAAS H. Quadrature spatial modulation performance over Nakagami-m fading channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10227–10231. doi: 10.1109/TVT.2015.2478841.
|
[8] |
ABU-HUDROUSS A M, EL ASTAL M T O, AL HABBASH A H, et al. Signed quadrature spatial modulation for MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2740–2746. doi: 10.1109/TVT.2020.2964118.
|
[9] |
ELFADIL H, MALEKI M, and BAHRAMI H R. A novel low-complexity adaptive bit mapping scheme for spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3674–3678. doi: 10.1109/TVT.2017.2780900.
|
[10] |
LIU Chaowen, YANG Lieliang, and WANG Wenjie. Transmitter-precoding-aided spatial modulation achieving both transmit and receive diversity[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1375–1388. doi: 10.1109/TVT.2017.2757403.
|
[11] |
WANG Leijun, LIANG Chulong, YANG Zhihua, et al. Two-layer coded spatial modulation with block Markov superposition transmission[J]. IEEE Transactions on Communications, 2016, 64(2): 643–653. doi: 10.1109/TCOMM.2015.2506170.
|
[12] |
AN Bo, WU Liang, ZHANG Zaichen, et al. Multi-user successive-coded spatial modulation scheme based on beamforming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10485–10498. doi: 10.1109/TVT.2022.3183084.
|
[13] |
YANG Shuaixin, XIAO Yue, CHEN Jiangong, et al. Integrated polarization and spatial modulation[J]. IEEE Transactions on Communications, 2023, 71(1): 527–539. doi: 10.1109/TCOMM.2022.3224016.
|
[14] |
YOUNIS A, SERAFIMOVSKI N, MESLEH R, et al. Generalised spatial modulation[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1498–1502. doi: 10.1109/ACSSC.2010.5757786.
|
[15] |
MESLEH R, ALTHUNIBAT S, and YOUNIS A. Differential quadrature spatial modulation[J]. IEEE Transactions on Communications, 2017, 65(9): 3810–3817. doi: 10.1109/TCOMM.2017.2712720.
|
[16] |
TRAN T Q, SUGIURA S, and LEE K. Ordering- and partitioning-aided sphere decoding for generalized spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10087–10091. doi: 10.1109/TVT.2018.2859597.
|
[17] |
RAJASHEKAR R, Yang Lieliang, HARI K V S, et al. L. Hanzo. Transmit antenna subset selection in generalized spatial modulation systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1979–1983. doi: 10.1109/TVT.2018.2889024.
|
[18] |
LAKSHMI NARASIMHAN T, RAVITEJA P, and CHOCKALINGAM A. Generalized spatial modulation in large-scale multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3764–3779. doi: 10.1109/TWC.2015.2411651.
|
[19] |
AN Jiancheng, XU Chao, LIU Yusha, et al. The achievable rate analysis of generalized quadrature spatial modulation and a pair of low-complexity detectors[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5203–5215. doi: 10.1109/TVT.2022.3155244.
|
[20] |
LIU Peng, BLUMENSTEIN J, PEROVIĆ N S, et al. Performance of generalized spatial modulation MIMO over measured 60GHz indoor channels[J]. IEEE Transactions on Communications, 2018, 66(1): 133–148. doi: 10.1109/TCOMM.2017.2754280.
|
[21] |
XIANG Luping, LIU Yusha, YANG Lieliang, et al. Low complexity detection for spatial modulation aided sparse code division multiple access[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12858–12871. doi: 10.1109/TVT.2021.3121128.
|
[22] |
LU Lu, LI G Y, LEE SWINDLEHURST A, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/JSTSP.2014.2317671.
|
[23] |
BIAN Yuyang, CHENG Xiang, WEN Miaowen, et al. Differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 3262–3268. doi: 10.1109/TVT.2014.2348791.
|
[24] |
WEN Miaowen, CHENG Xiang, BIAN Yuyang, et al. A low-complexity near-ML differential spatial modulation detector[J]. IEEE Signal Processing Letters, 2015, 22(11): 1834–1838. doi: 10.1109/LSP.2015.2425042.
|
[25] |
MARTIN P A. Differential spatial modulation for APSK in time-varying fading channels[J]. IEEE Communications Letters, 2015, 19(7): 1261–1264. doi: 10.1109/LCOMM.2015.2426172.
|
[26] |
WEI R Y and LIN T Y. Low-complexity differential spatial modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 356–359. doi: 10.1109/LWC.2018.2872990.
|
[27] |
JOSE D and SAMEER S M. A low complexity detector with near-ML performance for generalized differential spatial modulation[C]. 2020 International Conference on Signal Processing and Communications, Bangalore, India, 2020: 1–5. doi: 10.1109/SPCOM50965.2020.9179552.
|
[28] |
WEI R Y and CHANG Chenwei. A low-complexity soft-output detector for differential spatial modulation[J]. IEEE Wireless Communications Letters, 2022, 11(5): 1077–1081. doi: 10.1109/LWC.2022.3156889.
|
[29] |
XIU Haotian, YANG Lin, YU Daizhong, et al. A DFDD based detector for space-time block coded differential spatial modulation under time-selective channels[J]. IEEE Communications Letters, 2022, 26(2): 359–363. doi: 10.1109/LCOMM.2021.3132697.
|
[30] |
YANG Yukun, HAI Han, JIANG XueQin, et al. Low-complexity detectors for space-time block coded differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 12231–12236. doi: 10.1109/TVT.2024.3381863.
|
[31] |
SHAMASUNDAR B and CHOCKALINGAM A. A DNN architecture for the detection of generalized spatial modulation signals[J]. IEEE Communications Letters, 2020, 24(12): 2770–2774. doi: 10.1109/LCOMM.2020.3018260.
|
[32] |
HE Le, FAN Lisheng, LEI Xianfu, et al. Learning-based MIMO detection with dynamic spatial modulation[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1489–1502. doi: 10.1109/TCCN.2023.3306853.
|
[33] |
FENG Xinyu, EL-HAJJA M, XU Chao, et al. Deep learning-based soft iterative-detection of channel-coded compressed sensing-aided multi-dimensional index modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7530–7544. doi: 10.1109/TVT.2023.3241440.
|
[34] |
WEI R Y, CHEN S L, LIN Y H, et al. Bandwidth-efficient generalized differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 601–610. doi: 10.1109/TVT.2022.3202912.
|
[35] |
XIU Haotian, YU Daizhong, GAO Peiyuan, et al. An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low- complexity detector[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2227–2235. doi: 10.1109/TVT.2023.3316275.
|
[36] |
MURILLO-FUENTES J J, SANTOS I, ARADILLAS J C, et al. A low-complexity double EP-based detector for iterative detection and decoding in MIMO[J]. IEEE Transactions on Communications, 2021, 69(3): 1538–1547. doi: 10.1109/TCOMM.2020.3043771.
|