Citation: | SHAN Liang, SUN Jian, HONG Bo, KONG Ming. Noise Reduction and Temperature Field Reconstruction of Flame Light Field Images Based on Improved U-network[J]. Journal of Electronics & Information Technology, 2025, 47(3): 792-802. doi: 10.11999/JEIT240836 |
[1] |
张小雪, 王雨, 吴思远, 等. 基于级联稀疏查询机制的轻量化火灾检测算法[J]. 光电工程, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.
ZHANG Xiaoxue, WANG Yu, WU Siyuan, et al. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electronic Engineering, 2023, 50(10): 230216. doi: 10.12086/oee.2023.230216.
|
[2] |
王佳. 钙钛矿单探测器光谱测量方法及火焰温度探测研究[D]. [博士论文], 中北大学, 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.
WANG Jia. Research on perovskite single detector spectrumeter for flame temperature detection[D]. [Ph. D. dissertation], North University of China, 2023. doi: 10.27470/d.cnki.ghbgc.2023.000030.
|
[3] |
钟越, 蔡敏男, 徐文江, 等. 基于深度学习的湍流火焰三维羟基浓度场的时间超分辨率成像[J]. 航空动力学报, 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.
ZHONG Yue, CAI Minnan, XU Wenjiang, et al. Temporal super-resolution imaging of 3D OH concentration field in turbulent flame based on deep learning[J]. Journal of Aerospace Power, 2024, 39(12): 20230071. doi: 10.13224/j.cnki.jasp.20230071.
|
[4] |
张杰. 基于光场成像的火焰三维温度场测量方法研究[D]. [博士论文], 东南大学, 2018.
ZHANG Jie. Three-dimensional temperature measurement of flame based on light field imaging[D]. [Ph. D. dissertation], Southeast University, 2018. doi: 10.27014/d.cnki.gdnau.2021.004361.
|
[5] |
张杰. 基于深度学习和光场成像的火焰三维温度场重建[D]. [硕士论文], 东南大学, 2021.
ZHANG Jie. Rapid reconstruction of 3D flame temperature distribution based on deep learning and light field imaging[D]. [Master dissertation], Southeast University, 2021. doi: 10.27014/d.cnki.gdnau.2021.004361.
|
[6] |
孙安泰. 基于深度学习的火焰三维温度场层析重建及预测研究[D]. [硕士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.
SUN Antai. Tomography reconstruction and prediction of three-dimensional temperature field of flame based on deep learning[D]. [Master dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.003583.
|
[7] |
TIAN Chunwei, FEI Lunke, ZHENG Wenxian, et al. Deep learning on image denoising: An overview[J]. Neural Networks, 2020, 131: 251–275. doi: 10.1016/j.neUNet.2020.07.025.
|
[8] |
CAI Minnan, LUO Weiyi, XU Wenjiang, et al. Development of learning-based noise reduction and image reconstruction algorithm in two dimensional Rayleigh thermometry[J]. Optik, 2021, 248: 168082. doi: 10.1016/j.ijleo.2021.168082.
|
[9] |
邓安东. 基于深度学习的火焰温度场重建及火焰图像降噪方法研究[D]. [硕士论文], 上海交通大学, 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.
DENG Andong. Research on temperature field reconstruction and image denoising of flame based on deep learning[D]. [Master dissertation], Shanghai Jiao Tong University, 2021. doi: 10.27307/d.cnki.gsjtu.2021.000774.
|
[10] |
NIU Zhitian, QI Hong, SHI Jingwen, et al. Three-dimensional rapid visualization of flame temperature field via compression and noise reduction of light field imaging[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106270. doi: 10.1016/j.icheatmasstransfer.2022.106270.
|
[11] |
李晓欢, 王霞, 王丛赫, 等. 基于残差UNet的水下Mueller矩阵图像去散射算法[J]. 光学学报, 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.
LI Xiaohuan, WANG Xia, WANG Conghe, et al. De-scattering algorithm for underwater mueller matrix images based on residual UNet[J]. Acta Optica Sinica, 2022, 42(24): 2410001. doi: 10.3788/AOS202242.2410001.
|
[12] |
李潇凡, 王胜强, 翁轩, 等. 基于UNet深度学习算法的东海大型漂浮藻类遥感监测[J]. 光学学报, 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.
LI Xiaofan, WANG Shengqiang, WENG Xuan, et al. Remote sensing of floating macroalgae blooms in the East China Sea based on UNet deep learning model[J]. Acta Optica Sinica, 2021, 41(2): 0201002. doi: 10.3788/AOS202141.0201002.
|
[13] |
ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2480–2495. doi: 10.1109/TPAMI.2020.2968521.
|
[14] |
THECKEDATH D and SEDAMKAR R R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks[J]. SN Computer Science, 2020, 1(2): 79. doi: 10.1007/s42979-020-0114-9.
|
[15] |
寇旗旗, 程志威, 程德强, 等. 基于蓝图分离卷积的轻量化矿井图像超分辨率重建方法[J]. 煤炭学报, 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.
KOU Qiqi, CHENG Zhiwei, CHENG Deqiang, et al. Lightweight super resolution method based on blueprint separable convolution for mine image[J]. Journal of China Coal Society, 2024, 49(9): 4038–4050. doi: 10.13225/j.cnki.jccs.2023.1101.
|
[16] |
冯宇旭, 李裕梅. 深度学习优化器方法及学习率衰减方式综述[J]. 数据挖掘, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.
FENG Yuxu and LI Yumei. An overview of deep learning optimization methods and learning rate attenuation methods[J]. Hans Journal of Data Mining, 2018, 8(4): 186–200. doi: 10.12677/HJDM.2018.84020.
|
[17] |
LIU Jiaming, SUN Yu, XU Xiaojian, et al. Image restoration using total variation regularized deep image prior[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7715–7719. doi: 10.1109/ICASSP.2019.8682856.
|
[18] |
周成, 黄贺艳, 刘兵, 等. 基于混合散斑图的压缩计算鬼成像方法研究[J]. 光学学报, 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.
ZHOU Cheng, HUANG Heyan, LIU Bing, et al. Hybrid speckle-pattern compressive computational ghost imaging[J]. Acta Optica Sinica, 2016, 36(9): 0911001. doi: 10.3788/AOS201636.0911001.
|
[19] |
孙俊, 许传龙, 张彪, 等. 多焦距微透镜阵列光场成像火焰三维温度场测量[J]. 工程热物理学报, 2017, 38(10): 2164–2170.
SUN Jun, XU Chuanlong, ZHANG Biao, et al. Three-dimensional temperature measurement of the flame using the light field camera with a multiple focus microlens array[J]. Journal of Engineering Thermophysics, 2017, 38(10): 2164–2170.
|
[20] |
龙超, 金恒, 黎玲, 等. 基于特征融合的非局部均值CT图像降噪[J]. 光学学报, 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.
LONG Chao, JIN Heng, LI Ling, et al. CT Image denoising with non-local means based on feature fusion[J]. Acta Optica Sinica, 2022, 42(11): 1134024. doi: 10.3788/AOS202242.1134024.
|
[21] |
SARA U, AKTER M, and UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8–18. doi: 10.4236/jcc.2019.73002.
|
[22] |
GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1712–1722. doi: 10.1109/CVPR.2019.00181.
|
[23] |
MURALI V and SUDEEP P V. Image denoising using DnCNN: An exploration study[M]. JAYAKUMARI J, KARAGIANNIDIS G K, MA Maode, et al. Advances in Communication Systems and Networks: Select Proceedings of ComNet 2019. Singapore: Springer, 2020: 847–859. doi: 10.1007/978-981-15-3992-3_72.
|
[24] |
TIAN Chunwei, XU Yong, and ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461–473. doi: 10.1016/j.neunet.2019.08.022.
|
[25] |
WEISS K, KHOSHGOFTAAR T M, and WANG Dingding. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9. doi: 10.1186/s40537-016-0043-6.
|
[26] |
SINHA D and EL-SHARKAWY M. Thin mobilenet: An enhanced mobilenet architecture[C]. The 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, USA, 2019: 280–285. doi: 10.1109/UEMCON47517.2019.8993089.
|