Citation: | DONG Chao, CUI Can, JIA Ziye, ZHU Yian, ZHANG Lei, WU Qihui. Survey of Unified Representation Technology of Multi-dimensional Information for Low Altitude Intelligent Network[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1215-1229. doi: 10.11999/JEIT240835 |
[1] |
吴启晖, 董超, 贾子晔, 等. 低空智联网组网与控制理论方法[J]. 航空学报, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.
WU Qihui, DONG Chao, JIA Ziye, et al. Networking and control mechanism for low-altitude intelligent networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028809. doi: 10.7527/S1000-6893.2023.28809.
|
[2] |
张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 024638. doi: 10.7527/S1000-6893.2020.24638.
ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, et al. Future urban air mobility management: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024639. doi: 10.7527/S1000-6893.2020.24638.
|
[3] |
廖小罕, 徐晨晨, 叶虎平. 低空经济发展与低空路网基础设施建设的效益和挑战[J]. 中国科学院院刊, 2024, 39(11): 1966–1981. doi: 10.16418/j.issn.1000-3045.20240614002.
LIAO Xiaohan, XU Chenchen, YE Huping. Benefits and challenges of constructing low-altitude air route network infrastructure for developing low-altitude economy[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(11): 1966–1981. doi: 10.16418/j.issn.1000-3045.20240614002.
|
[4] |
NEW W K and LEOW C Y. Unmanned Aerial Vehicle (UAV) in future communication system[C]. The 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, Malaysia, 2021: 217–222. doi: 10.1109/APCC49754.2021.9609875.
|
[5] |
樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.
FAN Bangkui, LI Yun, and ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography, 2021, 40(9): 1441–1450. doi: 10.18306/dlkxjz.2021.09.001.
|
[6] |
RAY P P. A review on 6G for space-air-ground integrated network: Key enablers, open challenges, and future direction[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(9): 6949–6976. doi: 10.1016/j.jksuci.2021.08.014.
|
[7] |
史殿习, 洪臣, 康颖, 等. 面向多无人机协同飞行控制的云系统架构[J]. 计算机学报, 2020, 43(12): 2352–2371. doi: 10.11897/SP.J.1016.2020.02352.
SHI Dianxi, HONG Chen, KANG Ying, et al. Cloud-based control system architecture for multi-UAVs Cooperative flight[J]. Chinese Journal of Computers, 2020, 43(12): 2352–2371. doi: 10.11897/SP.J.1016.2020.02352.
|
[8] |
刘畅行, 陈思衡, 杨峰. 基于多模态大模型的智能无人机系统: 总结与展望[J]. 无线电工程, 2024, 54(12): 2923–2932. doi: 10.3969/j.issn.1003-3106.2024.12.020.
LIU Changxing, CHEN Siheng, and YANG Feng. Review of intelligent UAV systems based on large multimodal models[J]. Radio Engineering, 2024, 54(12): 2923–2932. doi: 10.3969/j.issn.1003-3106.2024.12.020.
|
[9] |
卢锟, 李荣鹏, 赵志峰, 等. 基于统一语义表征的多用户异构语义网络[J]. 移动通信, 2023, 47(4): 37–44. doi: 10.3969/j.issn.1006-1010.20230305-0001.
LU Kun, LI Rongpeng, ZHAO Zhifeng, et al. Multi-user heterogeneous semantic network based on unified semantic representation[J]. Mobile Communications, 2023, 47(4): 37–44. doi: 10.3969/j.issn.1006-1010.20230305-0001.
|
[10] |
刘华峰, 陈静静, 李亮, 等. 跨模态表征与生成技术[J]. 中国图象图形学报, 2023, 28(6): 1608–1629. doi: 10.11834/jig.230035.
LIU Huafeng, CHEN Jingjing, LI Liang, et al. Cross-modal representation learning and generation[J]. Journal of Image and Graphics, 2023, 28(6): 1608–1629. doi: 10.11834/jig.230035.
|
[11] |
李巧玲. 复杂场景下数字孪生多源数据融合技术研究[D]. [硕士/博士论文], 西安工业大学, 2024. doi: 10.27391/d.cnki.gxagu.2024.000467.
LI Qiaoling. Research on multisource data fusion technology for digital twins in complex environments[D]. [Master/Ph. D. dissertation], Xi’an Technological University, 2024. doi: 10.27391/d.cnki.gxagu.2024.000467.
|
[12] |
DU Hao, WANG Wei, XU Chaowen, et al. Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion[J]. Sensors, 2020, 20(3): 919. doi: 10.3390/s20030919.
|
[13] |
XI Lihu, HOU Jingwei, MA Guanglin, et al. A multiscale information fusion network based on PixelShuffle integrated with YOLO for aerial remote sensing object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 7501505. doi: 10.1109/LGRS.2024.3353304.
|
[14] |
ALLISON J A, PTUCHA R, and LYSHEVSKI S E. Resilient communication, object classification and data fusion in unmanned aerial systems[C]. 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, USA, 2018: 779–787. doi: 10.1109/ICUAS.2018.8453309.
|
[15] |
WENG Qian, CHEN Hao, CHEN Hongli, et al. A multisensor data fusion model for semantic segmentation in aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6511905. doi: 10.1109/LGRS.2022.3183613.
|
[16] |
沈锋, 丁国如, 李婕, 等. 电磁频谱多维态势压缩测绘技术研究进展[J]. 通信学报, 2023, 44(11): 25–42. doi: 10.11959/j.issn.1000-436x.2023174.
SHEN Feng, DING Guoru, LI Jie, et al. Research progress on electromagnetic spectrum multidimensional situation compressed mapping technology[J]. Journal on Communications, 2023, 44(11): 25–42. doi: 10.11959/j.issn.1000-436x.2023174.
|
[17] |
董超, 经宇骞, 屈毓锛, 等. 面向低空智联网频谱认知与决策的云边端融合体系架构[J]. 通信学报, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
DONG Chao, JING Yuqian, QU Yuben, et al. Cloud-edge-device fusion architecture oriented to spectrum cognition and decision in low altitude intelligence network[J]. Journal on Communications, 2023, 44(11): 1–12. doi: 10.11959/j.issn.1000-436x.2023228.
|
[18] |
SHANG Bodong, MAROJEVIC V, YI Yang, et al. Spectrum sharing for UAV communications: Spatial spectrum sensing and open issues[J]. IEEE Vehicular Technology Magazine, 2020, 15(2): 104–112. doi: 10.1109/MVT.2020.2980020.
|
[19] |
SENKUS B, YAMAN B, AYDIN H, et al. Implementation of high performance multi-agent position feeding framework[C]. 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 2022: 1–5. doi: 10.23919/MIKON54314.2022.9924764.
|
[20] |
杨鑫春, 李征航, 吴云. 北斗卫星导航系统的星座及XPL性能分析[J]. 测绘学报, 2011, 40(S1): 68–72.
YANG Xinchun, LI Zhenghang, and WU Yun. The performance analysis of constellation and XPL for compass[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(S1): 68–72.
|
[21] |
SAIFIZI M, MUSTAFA W A, RADZI N S M, et al. UAV based image acquisition data for 3D model application[J]. IOP Conference Series: Materials Science and Engineering, 2020, 917(1): 012074. doi: 10.1088/1757-899X/917/1/012074.
|
[22] |
罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 028822. doi: 10.7527/S1000-6893.2023.28822.
LUO Xudong, WU Yiquan, and CHEN Jinlin. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 028822. doi: 10.7527/S1000-6893.2023.28822.
|
[23] |
韩子硕, 范喜全, 付强, 等. 面向无人机视角的多源信息融合目标检测[J]. 系统工程与电子技术, 2025, 47(1): 52–61. doi: 10.12305/j.issn.1001-506X.2025.01.06.
HAN Zishuo, FAN Xiquan, FU Qiang, et al. Target detection based on multi-source information fusion from the perspective of drones[J]. Systems Engineering and Electronics, 2025, 47(1): 52–61. doi: 10.12305/j.issn.1001-506X.2025.01.06.
|
[24] |
LIAO Yiyang, JIA Ziye, DONG Chao, et al. Interference analysis for coexistence of UAVs and civil aircrafts based on automatic dependent surveillance-broadcast[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15911–15915. doi: 10.1109/TVT.2024.3414502.
|
[25] |
LIAO Yiyang, ZHANG Lei, JIA Ziye, et al. Impact of UAVs equipped with ADS-B on the civil aviation monitoring system[C]. 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233390.
|
[26] |
ZHANG Yifan, JIA Ziye, DONG Chao, et al. Recurrent LSTM-based UAV trajectory prediction with ADS-B information[C]. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 1–6. doi: 10.1109/GLOBECOM48099.2022.10000919.
|
[27] |
DONG Chao, ZHANG Yifan, JIA Ziye, et al. Three-dimension collision-free trajectory planning of UAVs based on ADS-B information in low-altitude urban airspace[J]. Chinese Journal of Aeronautics, 2025, 38(2): 103170. doi: 10.1016/j.cja.2024.08.001.
|
[28] |
RUSENO N, LIN Chungyan, and CHANG S C. UAS traffic management communications: The legacy of ADS-B, new establishment of remote ID, or leverage of ADS-B-like systems?[J]. Drones, 2022, 6(3): 57. doi: 10.3390/drones6030057.
|
[29] |
KHAN, S, GABA G S, BOEIRA F, et al. Formal verification and security assessment of the drone remote identification protocol[C]. 2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 2024: 1–8. doi: 10.1109/UVS59630.2024.10467159.
|
[30] |
MURRELL E, WALKER Z, KING E, et al. Remote ID and vehicle-to-vehicle communications for unmanned aircraft system traffic management[C]. The 15th International Workshop on Communication Technologies for Vehicles, Bordeaux, France, 2020: 194–202. doi: 10.1007/978-3-030-66030-7_17.
|
[31] |
ZHANG Lili, XIE Yuxiang, XIDAO Luan, et al. Multi-source heterogeneous data fusion[C]. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 2018: 47–51. doi: 10.1109/ICAIBD.2018.8396165.
|
[32] |
陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15–29. doi: 10.16592/j.cnki.1004-7859.2020.06.003.
CHEN Weishi, HUANG Yifeng, and LU Xianfeng. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15–29. doi: 10.16592/j.cnki.1004-7859.2020.06.003.
|
[33] |
CHEN Kaiwen and KOUDAS N. Unstructured data fusion for schema and data extraction[J]. Proceedings of the ACM on Management of Data, 2024, 2(3): 181. doi: 10.1145/3654984.
|
[34] |
CAI Yuxiang. Research on data fusion method of multi-source complex system[J]. Journal of Web Engineering, 2021, 20(5): 1553–1572. doi: 10.13052/jwe1540-9589.20510.
|
[35] |
ZHU Yian, JIA Ziye, WU Qihui, et al. UAV trajectory tracking via RNN-enhanced IMM-KF with ADS-B data[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570914.
|
[36] |
HUANG Fanghui, HE Yixin, DENG Xinyang, et al. A novel discount-weighted average fusion method based on reinforcement learning for conflicting data[J]. IEEE Systems Journal, 2023, 17(3): 4748–4751. doi: 10.1109/JSYST.2022.3228015.
|
[37] |
LI Xianfeng and XU Sen. Multi-sensor complex network data fusion under the condition of uncertainty of coupling occurrence probability[J]. IEEE Sensors Journal, 2021, 21(22): 24933–24940. doi: 10.1109/JSEN.2021.3061437.
|
[38] |
WANG Ze. Knowledge graph service system based on data fusion technology[C]. 2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC), Dharwad, India, 2023: 1–6. doi: 10.1109/ICAISC58445.2023.10200320.
|
[39] |
谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报, 2023, 44(18): 328226. doi: 10.7527/S1000-6893.2023.28226.
XIE Hua, SU Fangzheng, YIN Jianan, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328226. doi: 10.7527/S1000-6893.2023.28226.
|
[40] |
HONG Danfeng, CHANUSSOT J, and ZHU Xiaoxiang. An overview of multimodal remote sensing data fusion: From image to feature, from shallow to deep[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1245–1248. doi: 10.1109/IGARSS47720.2021.9554255.
|
[41] |
CHEN Donghua and ZHANG Runtong. Building multimodal knowledge bases with multimodal computational sequences and generative adversarial networks[J]. IEEE Transactions on Multimedia, 2024, 26: 2027–2040. doi: 10.1109/TMM.2023.3291503.
|
[42] |
QIANG Ma, TAO Xu, and GANG Daiyu. Research and implementation of archives knowledge base for multi-source heterogeneous data fusion[C]. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC), Qingdao, China, 2022: 462–465. doi: 10.1109/ICFTIC57696.2022.10075283.
|
[43] |
ZENKERT J, HOLLAND A, and FATHI M. Discovering contextual knowledge with associated information in dimensional structured knowledge bases[C]. Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016: 001923–001928. doi: 10.1109/SMC.2016.7844520.
|
[44] |
JI Shaoxiong, PAN Shirui, CAMBRIA Erik, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494–514. doi: 10.1109/TNNLS.2021.3070843.
|
[45] |
LÓPEZ-CIFUENTES A, ESCUDERO-VIÑOLO M, BESCÓS J, et al. Semantic-aware scene recognition[J]. Pattern Recognition, 2020, 102: 107256. doi: 10.1016/j.patcog.2020.107256.
|
[46] |
陈囿任, 李勇, 温明, 等. 多模态知识图谱融合技术研究综述[J]. 计算机工程与应用, 2024, 60(13): 36–50. doi: 10.3778/j.issn.1002-8331.2309-0481.
CHEN Youren, LI Yong, WEN Ming, et al. Research and comprehensive review on multi-modal knowledge graph fusion techniques[J]. Computer Engineering and Applications, 2024, 60(13): 36–50. doi: 10.3778/j.issn.1002-8331.2309-0481.
|
[47] |
XIAO Zhu, CHEN Yanxun, JIANG Hongbo, et al. Resource management in UAV-assisted MEC: State-of-the-art and open challenges[J]. Wireless Networks, 2022, 28(7): 3305–3322. doi: 10.1007/s11276-022-03051-4.
|
[48] |
LIAN, Yongxing, QIAN Liang, DING Lianghui, et al. Semantic fusion infrastructure for unmanned vehicle system based on cooperative 5G MEC[C]. 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 2020: 202–207. doi: 10.1109/ICCC49849.2020.9238949.
|
[49] |
YU Yue, WU Jun, TANG Xiao, et al. Distributed downloading strategy for multi-source data fusion in edge-enabled vehicular network[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 1–6. doi: 10.1109/ICCChina.2019.8855944.
|
[50] |
JING Yi, WANG Jingjing, JIANG Chunxiao, et al. Satellite MEC with federated learning: Architectures, technologies and challenges[J]. IEEE Network, 2022, 36(5): 106–112. doi: 10.1109/MNET.001.2200202.
|
[51] |
MITOLA J. Cognitive radio[D]. [Ph. D. dissertation], Royal Institute of Technology, 2000.
|
[52] |
WAN Fanqi, HUANG Xinting, CAI Deng, et al. Knowledge fusion of large language models[C]. The Twelfth International Conference on Learning Representations, Vienna, Austria, 2024.
|
[53] |
PAN Shirui, LUO Linhao, WANG Yufei, et al. Unifying large language models and knowledge graphs: A roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580–3599. doi: 10.1109/TKDE.2024.3352100.
|