Citation: | ZHAO Zijian, XU Shuwen, SHUI Penglang. A Network Model for Sea Surface Small Targets Classification Based on Multidomain Radar Echo Data Fusion[J]. Journal of Electronics & Information Technology, 2025, 47(3): 696-706. doi: 10.11999/JEIT240818 |
[1] |
ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
|
[2] |
关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
|
[3] |
NI Jun, ZHANG Fan, YIN Qiang, et al. Random neighbor pixel-block-based deep recurrent learning for polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7557–7569. doi: 10.1109/TGRS.2020.3037209.
|
[4] |
LEE S J, LEE M J, KIM K T, et al. Classification of ISAR images using variable cross-range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2291–2303. doi: 10.1109/TAES.2018.2814211.
|
[5] |
XU Shuwen, RU Hongtao, LI Dongchen, et al. Marine radar small target classification based on block-whitened time-frequency spectrogram and pre-trained CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101311. doi: 10.1109/TGRS.2023.3240693.
|
[6] |
GUO Zixun and SHUI Penglang. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4947–4964. doi: 10.1109/TAES.2020.3011868.
|
[7] |
KUO B C, HO H H, LI C H, et al. A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 317–326. doi: 10.1109/JSTARS.2013.2262926.
|
[8] |
YIN Qiang, CHENG Jianda, ZHANG Fan, et al. Interpretable POLSAR image classification based on adaptive-dimension feature space decision tree[J]. IEEE Access, 2020, 8: 173826–173837. doi: 10.1109/ACCESS.2020.3023134.
|
[9] |
JIA Qingwei, DENG Tingquan, WANG Yan, et al. Discriminative label correlation based robust structure learning for multi-label feature selection[J]. Pattern Recognition, 2024, 154: 110583. doi: 10.1016/j.patcog.2024.110583.
|
[10] |
ZHONG Jingyu, SHANG Ronghua, ZHAO Feng, et al. Negative label and noise information guided disambiguation for partial multi-label learning[J]. IEEE Transactions on Multimedia, 2024, 26: 9920–9935. doi: 10.1109/TMM.2024.3402534.
|
[11] |
ZHAO Jie, LING Yun, HUANG Faliang, et al. Incremental feature selection for dynamic incomplete data using sub-tolerance relations[J]. Pattern Recognition, 2024, 148: 110125. doi: 10.1016/j.patcog.2023.110125.
|
[12] |
ZOU Yizhang, HU Xuegang, and LI Peipei. Gradient-based multi-label feature selection considering three-way variable interaction[J]. Pattern Recognition, 2024, 145: 109900. doi: 10.1016/j.patcog.2023.109900.
|
[13] |
SUN Xu, GAO Junyu, and YUAN Yuan. Alignment and fusion using distinct sensor data for multimodal aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5626811. doi: 10.1109/TGRS.2024.3406697.
|
[14] |
WU Xin, HONG Danfeng, and CHANUSSOT J. Convolutional neural networks for multimodal remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5517010. doi: 10.1109/TGRS.2021.3124913.
|
[15] |
DUAN Guoxing, WANG Yunhua, ZHANG Yanmin, et al. A network model for detecting marine floating weak targets based on multimodal data fusion of radar echoes[J]. Sensors, 2022, 22(23): 9163. doi: 10.3390/s22239163.
|
[16] |
Cognitive Systems Laboratory. The IPIX radar database[EB/OL]. http://soma.ece.mcmaster.ca/ipix, 2001.
|
[17] |
The Defense, Peace, Safety, and Security Unit of the Council for Scientific and Industrial Research. The Fynmeet radar database[EB/OL]. http://www.csir.co.ca/small_boat_detection, 2007.
|
[18] |
RICHARD C. Time-frequency-based detection using discrete-time discrete-frequency Wigner distributions[J]. IEEE Transactions on Signal Processing, 2002, 50(9): 2170–2176. doi: 10.1109/TSP.2002.801927.
|
[19] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[20] |
KAYED M, ANTER A, and MOHAMED H. Classification of garments from fashion MNIST dataset using CNN LeNet-5 architecture[C]. 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, 2020: 238–243. doi: 10.1109/ITCE48509.2020.9047776.
|
[21] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[22] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|