Citation: | LI Yahong, LI Yijing, YANG Xiaodong, ZHANG Yuan, NIU Shufen. A Verifiable Federated Learning Scheme Based on Homomorphic Encryption and Group Signature[J]. Journal of Electronics & Information Technology, 2025, 47(3): 758-768. doi: 10.11999/JEIT240796 |
[1] |
WEN Jie, ZHANG Zhixia, LAN Yang, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513–535. doi: 10.1007/s13042-022-01647-y.
|
[2] |
LI Li, FAN Yuxi, TSE M, et al. A review of applications in federated learning[J]. Computers & Industrial Engineering, 2020, 149: 106854. doi: 10.1117/12.2675351.
|
[3] |
魏立斐, 张无忌, 张蕾, 等. 基于本地差分隐私的异步横向联邦安全梯度聚合方案[J]. 电子与信息学报, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
WEI Lifei, ZHANG Wuji, ZHANG Lei, et al. A Secure Gradient Aggregation Scheme Based on Local Differential Privacy in Asynchronous Horizontal Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
|
[4] |
QU Zhiguo, TANG Yang, MUHAMMAD G, et al. Privacy protection in intelligent vehicle networking: A novel federated learning algorithm based on information fusion[J]. Information Fusion, 2023, 98: 101824. doi: 10.1016/j.inffus.2023.101824.
|
[5] |
LI Zhang, XU Jianbo, VIJAYAKUMAR P, et al. Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(5): 2864–2880. doi: 10.1109/TNSE.2022.3185327.
|
[6] |
TAMILARASI G, GANDHI K R, and PALANISAMY V. Improved Homomorphic Encryption with Optimal Key Generation Technique for VANETs[J]. Intelligent Automation & Soft Computing, 2022, 33(2). doi: 10.32604/iasc.2022.024687.
|
[7] |
WIBAWA F, CATAK F O, KUZLU M, et al. Homomorphic encryption and federated learning based privacy-preserving CNN training: Covid-19 detection use-case[C]. The 2022 European Interdisciplinary Cybersecurity Conference. Barcelona, Spain, 2022: 85-90. doi: 10.1145/3528580.3532845.
|
[8] |
ZHANG Jiale, LIU Yue, WU Di, et al. VPFL: A verifiable privacy-preserving federated learning scheme for edge computing systems[J]. Digital Communications and Networks, 2023, 9(4): 981–989. doi: 10.1016/j.dcan.2022.05.010.
|
[9] |
WANG Peng, and LIU Yining. SEMA: Secure and efficient message authentication protocol for VANETs[J]. IEEE systems journal, 2021, 15.(1): 846–855. doi: 10.1109/JSYST.2021.3051435.
|
[10] |
AN Haoyang, HE Debiao, BAO Zijian, et al. An identity-based dynamic group signature scheme for reputation evaluation systems[J]. Journal of Systems Architecture, 2023, 139: 102875. doi:org/ 10.1016/j.sysarc.2023.102875. doi: 10.1016/j.sysarc.2023.102875.
|
[11] |
张海波, 陈舟, 黄宏武, 等. VANET 系统中基于中国剩余定理的群内相互认证密钥协商协议[J]. 通信学报, 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.
ZHANG Haibo, CHEN Zhou, HUANG Hongwu, et al. Intra-group mutual authentication key agreement protocol based on Chinese remainder theorem in VANET system[J]. Journal on Communications, 2022, 43(1): 182–193. doi: 10.11959/j.issn.1000-436x.2022002.
|
[12] |
XIA Feng, LIU Haiyang, YANG Haowei, et al. Batch-Aggregate: Efficient Aggregation for Private Federated Learning in VANETs[J]. IEEE Transactions on Dependable and Secure Computing, 2024.1-15. doi: 10.1109/TDSC.2024.3364371.
|
[13] |
XIA Feng, WANG Xiaofeng, LIU Haiyang, et al. A Privacy-preserving Aggregation Scheme with Continuous Authentication for Federated Learning in VANETs[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9465–9477. doi: 10.1109/TVT.2024.3369942.
|
[14] |
WANG Ruyan, YUAN Xingmin, YANG Zhigang, et al. RFLPV: A robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT[J]. Information Fusion, 2024, 102: 102029. doi: 10.1016/j.inffus.2023.102029.
|
[15] |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23. Springer International Publishing, 2017. doi: 10.1007/978-3-319-70694-8_15.
|
[16] |
LEE Y, LEE J W, and KIM Y S. Near-Optimal Polynomial for Modulus Reduction Using L2-Norm for Approximate Homomorphic Encryption[J]. IEEE Access, vol. 8, pp. 144321-144330, 2020. doi: 10.1109/ACCESS.2020.3014369.
|
[17] |
王勇. 联邦学习模型安全聚合关键技术研究[D]. [博士论文]. 安徽师范大学, 2024. doi: 10.26920/d.cnki.gansu.2024.000005.
WANG Yong, Research on key technologies of secure model aggregation for federated learning[D]. [Ph. D. dissertation], Anhui Normal University, 2024. doi: 10.26920/d.cnki.gansu.2024.000005.
|