Citation: | LIN Yan, XIA Kaiyuan, ZHANG Yijin. Federated Slicing Resource Management in Edge Computing Networks based on GAN-assisted Multi-Agent Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2025, 47(3): 666-677. doi: 10.11999/JEIT240773 |
[1] |
GHONGE M, MANGRULKAR R S, JAWANDHIYA P M, et al. Future Trends in 5G and 6G: Challenges, Architecture, and Applications[M]. Boca Raton: CRC Press, 2022.
|
[2] |
DEBBABI F, JMAL R, FOURATI L C, et al. Algorithmics and modeling aspects of network slicing in 5G and Beyonds network: Survey[J]. IEEE Access, 2020, 8: 162748–162762. doi: 10.1109/ACCESS.2020.3022162.
|
[3] |
MATENCIO-ESCOLAR A, WANG Qi, and CALERO J M A. SliceNetVSwitch: Definition, design and implementation of 5G multi-tenant network slicing in software data paths[J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2212–2225. doi: 10.1109/TNSM.2020.3029653.
|
[4] |
吴大鹏, 郑豪, 崔亚平. 面向服务的车辆网络切片协调智能体设计[J]. 电子与信息学报, 2020, 42(8): 1910–1917. doi: 10.11999/JEIT190635.
WU Dapeng, ZHENG Hao, and CUI Yaping. Service-oriented coordination agent design for network slicing in vehicular networks[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1910–1917. doi: 10.11999/JEIT190635.
|
[5] |
唐伦, 魏延南, 谭颀, 等. H-CRAN网络下联合拥塞控制和资源分配的网络切片动态资源调度策略[J]. 电子与信息学报, 2020, 42(5): 1244–1252. doi: 10.11999/JEIT190439.
TANG Lun, WEI Yannan, TAN Qi, et al. Joint congestion control and resource allocation dynamic scheduling strategy for network slices in heterogeneous cloud raido access network[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1244–1252. doi: 10.11999/JEIT190439.
|
[6] |
SHAH S D A, GREGORY M A, and LI Shuo. Cloud-native network slicing using software defined networking based multi-access edge computing: A survey[J]. IEEE Access, 2021, 9: 10903–10924. doi: 10.1109/ACCESS.2021.3050155.
|
[7] |
SHAH S D A, GREGORY M A, and LI Shuo. Toward network-slicing-enabled edge computing: A cloud-native approach for slice mobility[J]. IEEE Internet of Things Journal, 2024, 11(2): 2684–2700. doi: 10.1109/JIOT.2023.3292520.
|
[8] |
FAN Wenhao, LI Xuewei, TANG Bihua, et al. MEC network slicing: Stackelberg-game-based slice pricing and resource allocation with QoS guarantee[J]. IEEE Transactions on Network and Service Management, 2024, 21(4): 4494–4509. doi: 10.1109/TNSM.2024.3409277.
|
[9] |
JOŠILO S and DÁN G. Joint wireless and edge computing resource management with dynamic network slice selection[J]. IEEE/ACM Transactions on Networking, 2022, 30(4): 1865–1878. doi: 10.1109/TNET.2022.3156178.
|
[10] |
HUSAIN S, KUNZ A, PRASAD A, et al. Mobile edge computing with network resource slicing for internet-of-things[C]. The 2018 IEEE 4th World Forum on Internet of Things, Singapore, 2018: 1–6. doi: 10.1109/WF-IoT.2018.8355232.
|
[11] |
SHEN Xuemin, GAO Jie, WU Wen, et al. AI-assisted network-slicing based next-generation wireless networks[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 45–66. doi: 10.1109/OJVT.2020.2965100.
|
[12] |
ELSAYED M and EROL-KANTARCI M. Reinforcement learning-based joint power and resource allocation for URLLC in 5G[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9014032.
|
[13] |
AZIMI Y, YOUSEFI S, KALBKHANI H, et al. Energy-efficient deep reinforcement learning assisted resource allocation for 5G-RAN slicing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 856–871. doi: 10.1109/TVT.2021.3128513.
|
[14] |
HUA Yuxiu, LI Rongpeng, ZHAO Zhifeng, et al. GAN-powered deep distributional reinforcement learning for resource management in network slicing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(2): 334–349. doi: 10.1109/JSAC.2019.2959185.
|
[15] |
ADDAD R A, DUTRA D L C, TALEB T, et al. Toward using reinforcement learning for trigger selection in network slice mobility[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2241–2253. doi: 10.1109/JSAC.2021.3078501.
|
[16] |
LI Xuanheng, JIAO Kajia, CHEN Xingyun, et al. Demand-oriented Fog-RAN slicing with self-adaptation via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 14704–14716. doi: 10.1109/TVT.2023.3280242.
|
[17] |
ZHOU Hao, ELSAYED M, and EROL-KANTARCI M. RAN resource slicing in 5G using multi-agent correlated Q-learning[C]. The 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, 2021: 1179–1184. doi: 10.1109/PIMRC50174.2021.9569358.
|
[18] |
AKYILDIZ H A, GEMICI Ö F, HÖKELEK I, et al. Hierarchical reinforcement learning based resource allocation for RAN slicing[J]. IEEE Access, 2024, 12: 75818–75831. doi: 10.1109/ACCESS.2024.3406949.
|
[19] |
CUI Yaping, SHI Hongji, WANG Ruyan, et al. Multi-agent reinforcement learning for slicing resource allocation in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 2005–2016. doi: 10.1109/TITS.2023.3314929.
|
[20] |
HUANG Chen, CAO Jiannong, WANG Shihui, et al. Dynamic resource scheduling optimization with network coding for multi-user services in the internet of vehicles[J]. IEEE Access, 2020, 8: 126988–127003. doi: 10.1109/ACCESS.2020.3001140.
|
[21] |
LIN Yan, BAO Jinming, ZHANG Yijin, et al. Privacy-preserving joint edge association and power optimization for the internet of vehicles via federated multi-agent reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8256–8261. doi: 10.1109/TVT.2023.3240682.
|
[22] |
GUPTA A, MAURYA M K, DHERE K, et al. Privacy-preserving hybrid federated learning framework for mental healthcare applications: Clustered and quantum approaches[J]. IEEE Access, 2024, 12: 145054–145068. doi: 10.1109/ACCESS.2024.3464240.
|
[23] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5769–5779.
|