Citation: | SHI Baoshun, CHENG Shizhan, JIANG Ke, FU Zhaoran. Model and Data Dual-driven Joint Limited-Angle CT Reconstruction and Metal Artifact Reduction Method[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1569-1581. doi: 10.11999/JEIT240703 |
[1] |
DE BASEA M B, THIERRY-CHEF I, HARBRON R, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults[J]. Nature Medicine, 2023, 29(12): 3111–3119. doi: 10.1038/s41591-023-02620-0.
|
[2] |
PAN Xiaochuan, SIDKY E Y, and VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12): 123009. doi: 10.1088/0266-5611/25/12/123009.
|
[3] |
YOO S, YANG Xiaogang, WOLFMAN M, et al. Sinogram image completion for limited angle tomography with generative adversarial networks[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1252–1256. doi: 10.1109/ICIP.2019.8804416.
|
[4] |
ZHANG Yanbo and YU Hengyong. Convolutional neural network based metal artifact reduction in x-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1370–1381. doi: 10.1109/TMI.2018.2823083.
|
[5] |
MA Chenglong, LI Zilong, ZHANG Junping, et al. FreeSeed: Frequency-band-aware and self-guided network for sparse-view CT reconstruction[C]. 26th International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, 2023: 250–259. doi: 10.1007/978-3-031-43999-5_24.
|
[6] |
SHI Baoshun, ZHANG Shaolei, and FU Zhaoran. Artifact region-aware transformer: Global context helps CT metal artifact reduction[J]. IEEE Signal Processing Letters, 2024, 31: 1249–1253. doi: 10.1109/LSP.2024.3393355.
|
[7] |
于佳弘, 张昆鹏, 靳爽, 等. 弦图插值结合UNIT网络图像转换的CT金属伪影校正[J]. 南方医科大学学报, 2023, 43(7): 1214–1223. doi: 10.12122/j.issn.1673-4254.2023.07.18.
YU Jiahong, ZHANG Kunpeng, JIN Shuang, et al. Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction[J]. Journal of Southern Medical University, 2023, 43(7): 1214–1223. doi: 10.12122/j.issn.1673-4254.2023.07.18.
|
[8] |
WANG Ce, SHANG Kun, ZHANG Haimiao, et al. DuDoTrans: Dual-domain transformer for sparse-view CT reconstruction[C]. 5th International Workshop on Machine Learning for Medical Image Reconstruction, Singapore, 2022: 84–94. doi: 10.1007/978-3-031-17247-2_9.
|
[9] |
LIN Weian, LIAO Haofu, PENG Cheng, et al. DuDoNet: Dual domain network for CT metal artifact reduction[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 10504–10513. doi: 10.1109/CVPR.2019.01076.
|
[10] |
WANG Ce, ZHANG Haimiao, LI Qian, et al. Improving generalizability in limited-angle CT reconstruction with sinogram extrapolation[C]. 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 86–96. doi: 10.1007/978-3-030-87231-1_9.
|
[11] |
WAGN Hong, LI Yuexiang, MENG Deyu, et al. Adaptive convolutional dictionary network for CT metal artifact reduction[C]. Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 1401–1407. doi: 10.24963/ijcai.2022/195.
|
[12] |
袁伟, 席雅睿, 谭川东, 等. 基于Swin-Transformer迭代展开的有限角CT图像重建用于PTCT成像[J]. 光学学报, 2024, 44(8): 0834001. doi: 10.3788/AOS231823.
YUAN Wei, XI Yarui, TAN Chuandong, et al. Limited-angle CT image reconstruction based on Swin-Transformer iterative unfolding for PTCT imaging[J]. Acta Optica Sinica, 2024, 44(8): 0834001. doi: 10.3788/AOS231823.
|
[13] |
赵云松, 李宏伟, 张朋. 有限角CT成像研究进展[J]. 中国体视学与图像分析, 2022, 27(4): 436–446. doi: 10.13505/j.1007-1482.2022.27.04.010.
ZHAO Yunsong, LI Hongwei, and ZHANG Peng. Development of limited-angle CT imaging[J]. Chinese Journal of Stereology and Image Analysis, 2022, 27(4): 436–446. doi: 10.13505/j.1007-1482.2022.27.04.010.
|
[14] |
YAZDANPANAH A P and REGENTOVA E E. Sparse-view CT reconstruction using curvelet and TV-based regularization[C]. 13th International Conference on Image Analysis and Recognition, Póvoa de Varzim, Portugal, 2016: 672–677. doi: 10.1007/978-3-319-41501-7_75.
|
[15] |
XU Moran, HU Dianlin, LUO Fulin, et al. Limited-angle X-ray CT reconstruction using image gradient l0-norm with dictionary learning[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 78–87. doi: 10.1109/TRPMS.2020.2991887.
|
[16] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509–4522. doi: 10.1109/TIP.2017.2713099.
|
[17] |
ZHANG Zhicheng, LIANG Xiaokun, DONG Xu, et al. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407–1417. doi: 10.1109/TMI.2018.2823338.
|
[18] |
GAO Yuan, ZHANG Liu, YU Wenxue, et al. Cas-PRED: A limited-angle cone beam CT reconstruction research based on prior information[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 4504117. doi: 10.1109/TIM.2023.3335513.
|
[19] |
HU Dianlin, ZHANG Yikun, QUAN Guotao, et al. CROSS: Cross-domain residual-optimization-based structure strengthening reconstruction for limited-angle CT[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(5): 521–531. doi: 10.1109/TRPMS.2023.3242662.
|
[20] |
CHENG Weiting, HE Jichun, LIU Yi, et al. CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction[J]. Computers in Biology and Medicine, 2023, 163: 107161. doi: 10.1016/j.compbiomed.2023.107161.
|
[21] |
VERBURG J M and SECO J. CT metal artifact reduction method correcting for beam hardening and missing projections[J]. Physics in Medicine & Biology, 2012, 57(9): 2803–2818. doi: 10.1088/0031-9155/57/9/2803.
|
[22] |
KALENDER W A, HEBEL R, and EBERSBERGER J. Reduction of CT artifacts caused by metallic implants[J]. Radiology, 1987, 164(2): 576–577. doi: 10.1148/radiology.164.2.3602406.
|
[23] |
MEYER E, RAUPACH R, LELL M, et al. Normalized metal artifact reduction (NMAR) in computed tomography[J]. Medical Physics, 2010, 37(10): 5482–5493. doi: 10.1118/1.3484090.
|
[24] |
ZHANG Haimiao, DONG Bin, and LIU Baodong. A reweighted joint spatial-radon domain CT image reconstruction model for metal artifact reduction[J]. SIAM Journal on Imaging Sciences, 2018, 11(1): 707–733. doi: 10.1137/17M1140212.
|
[25] |
WANG Hong, LI Yuexiang, ZHANG Haimiao, et al. InDuDoNet: An interpretable dual domain network for CT metal artifact reduction[C]. 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 107–118. doi: 10.1007/978-3-030-87231-1_11.
|
[26] |
WANG Hong, LI Yuexiang, ZHANG Haimiao, et al. InDuDoNet+: A deep unfolding dual domain network for metal artifact reduction in CT images[J]. Medical Image Analysis, 2023, 85: 102729. doi: 10.1016/j.media.2022.102729.
|
[27] |
SHI Baoshun, JIANG Ke, ZHANG Shaolei, et al. Mud-Net: Multi-domain deep unrolling network for simultaneous sparse-view and metal artifact reduction in computed tomography[J]. Machine Learning: Science and Technology, 2024, 5(1): 015010. doi: 10.1088/2632-2153/ad1b8e.
|
[28] |
SHI Baoshun, ZHANG Shaolei, JIANG Ke, et al. Coupling model-and data-driven networks for CT metal artifact reduction[J]. IEEE Transactions on Computational Imaging, 2024, 10: 415–428. doi: 10.1109/TCI.2024.3369408.
|
[29] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[30] |
LIU Xiangbin, LIU Ying, FU Weina, et al. RETRACTED ARTICLE: SCTV-UNet: A COVID-19 CT segmentation network based on attention mechanism[J]. Soft Computing, 2024, 28(2): 473. doi: 10.1007/s00500-023-07991-7.
|
[31] |
MCCOLLOUGH C. TU-FG-207A-04: Overview of the low dose CT grand challenge[J]. Medical Physics, 2016, 43(6Part35): 3759–3760. doi: 10.1118/1.4957556.
|
[32] |
YAN Ke, WANG Xiaosong, LU Le, et al. Deep lesion graphs in the wild: Relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9261–9270. doi: 10.1109/CVPR.2018.00965.
|
[33] |
GLOCKER B, ZIKIC D, KONUKOGLU E, et al. Vertebrae localization in pathological spine CT via dense classification from sparse annotations[C]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 2013: 262–270. doi: 10.1007/978-3-642-40763-5_33.
|