Citation: | CAO Yi, LI Jie, YE Peitao, WANG Yanwen, LÜ Xianhai. Skeleton-based Action Recognition with Selective Multi-scale Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2025, 47(3): 839-849. doi: 10.11999/JEIT240702 |
[1] |
IODICE F, DE MOMI E, and AJOUDANI A. HRI30: An action recognition dataset for industrial human-robot interaction[C]. Proceedings of the 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 4941–4947. doi: 10.1109/ICPR56361.2022.9956300.
|
[2] |
SARDARI S, SHARIFZADEH S, DANESHKHAH A, et al. Artificial intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review[J]. Computers in Biology and Medicine, 2023, 158: 106835. doi: 10.1016/j.compbiomed.2023.106835.
|
[3] |
SUN Zehua, KE Qiuhong, RAHMANI H, et al. Human action recognition from various data modalities: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3200–3225. doi: 10.1109/TPAMI.2022.3183112.
|
[4] |
曹毅, 吴伟官, 张小勇, 等. 基于自校准机制的时空采样图卷积行为识别模型[J]. 工程科学学报, 2024, 46(3): 480–490. doi: 10.13374/j.issn2095-9389.2022.12.25.002.
CAO Yi, WU Weiguan, ZHANG Xiaoyong, et al. Action recognition model based on the spatiotemporal sampling graph convolutional network and self-calibration mechanism[J]. Chinese Journal of Engineering, 2024, 46(3): 480–490. doi: 10.13374/j.issn2095-9389.2022.12.25.002.
|
[5] |
SHEN Xiangpei and DING Yanrui. Human skeleton representation for 3D action recognition based on complex network coding and LSTM[J]. Journal of Visual Communication and Image Representation, 2022, 82: 103386. doi: 10.1016/j.jvcir.2021.103386.
|
[6] |
LIU Jun, WANG Gang, HU Ping, et al. Global context-aware attention LSTM networks for 3D action recognition[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 3671–3680. doi: 10.1109/CVPR.2017.391.
|
[7] |
XIA Rongjie, LI Yanshan, and LUO Wenhan. LAGA-Net: Local-and-global attention network for skeleton based action recognition[J]. IEEE Transactions on Multimedia, 2022, 24: 2648–2661. doi: 10.1109/TMM.2021.3086758.
|
[8] |
ZHANG Pengfei, LAN Cuiling, ZENG Wenjun, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1109–1118. doi: 10.1109/CVPR42600.2020.00119.
|
[9] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 12018–12027. doi: 10.1109/CVPR.2019.01230.
|
[10] |
CHEN Yuxin, ZHANG Ziqi, YUAN Chunfeng, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 13339–13348. doi: 10.1109/ICCV48922.2021.01311.
|
[11] |
曹毅, 吴伟官, 李平, 等. 基于时空特征增强图卷积网络的骨架行为识别[J]. 电子与信息学报, 2023, 45(8): 3022–3031. doi: 10.11999/JEIT220749.
CAO Yi, WU Weiguan, LI Ping, et al. Skeleton action recognition based on spatio-temporal feature enhanced graph convolutional network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3022–3031. doi: 10.11999/JEIT220749.
|
[12] |
ZHU Yisheng, SHUAI Hui, LIU Guangcan, et al. Multilevel spatial-temporal excited graph network for skeleton-based action recognition[J]. IEEE Transactions on Image Processing, 2023, 32: 496–508. doi: 10.1109/TIP.2022.3230249.
|
[13] |
ZHOU Huanyu, LIU Qingjie, and WANG Yunhong. Learning discriminative representations for skeleton based action recognition[C]. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023: 10608–10617. doi: 10.1109/CVPR52729.2023.01022.
|
[14] |
WANG Kaixuan, DENG Hongmin, and ZHU Qilin. Lightweight channel-topology based adaptive graph convolutional network for skeleton-based action recognition[J]. Neurocomputing, 2023, 560: 126830. doi: 10.1016/j.neucom.2023.126830.
|
[15] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 7444–7452. doi: 10.1609/aaai.v32i1.12328.
|
[16] |
GEDAMU K, JI Yanli, GAO Lingling, et al. Relation-mining self-attention network for skeleton-based human action recognition[J]. Pattern Recognition, 2023, 139: 109455. doi: 10.1016/j.patcog.2023.109455.
|
[17] |
LIU Ziyu, ZHANG Hongwen, CHEN Zhenghao, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 140–149. doi: 10.1109/CVPR42600.2020.00022.
|
[18] |
LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
|
[19] |
XIA Yu, GAO Qingyuan, WU Weiguan, et al. Skeleton-based action recognition based on multidimensional adaptive dynamic temporal graph convolutional network[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107210. doi: 10.1016/j.engappai.2023.107210.
|
[20] |
AMIR S, LIU Jun, NG T T, et al. NTU RGB+D: A large scale dataset for 3D human activity analysis[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA: IEEE, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115.
|
[21] |
LIU Jun, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684–2701. doi: 10.1109/TPAMI.2019.2916873.
|
[22] |
PAN Qingzhe, ZHAO Zhifu, XIE Xuemei, et al. View-normalized and subject-independent skeleton generation for action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7398–7412. doi: 10.1109/TCSVT.2022.3219864.
|
[23] |
曹毅, 刘晨, 盛永健, 等. 基于三维图卷积与注意力增强的行为识别模型[J]. 电子与信息学报, 2021, 43(7): 2071–2078. doi: 10.11999/JEIT200448.
CAO Yi, LIU Chen, SHENG Yongjian, et al. Action recognition model based on 3D graph convolution and attention enhanced[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2071–2078. doi: 10.11999/JEIT200448.
|