Advanced Search
Volume 33 Issue 5
Jun.  2011
Turn off MathJax
Article Contents
Zhang Liang, Huang Shu-Guang, Guo Hao. A Fast Kernel Supervised Locality Preserving Projection Algorithm[J]. Journal of Electronics & Information Technology, 2011, 33(5): 1049-1054. doi: 10.3724/SP.J.1146.2010.01044
Citation: Zhang Liang, Huang Shu-Guang, Guo Hao. A Fast Kernel Supervised Locality Preserving Projection Algorithm[J]. Journal of Electronics & Information Technology, 2011, 33(5): 1049-1054. doi: 10.3724/SP.J.1146.2010.01044

A Fast Kernel Supervised Locality Preserving Projection Algorithm

doi: 10.3724/SP.J.1146.2010.01044 cstr: 32379.14.SP.J.1146.2010.01044
  • Received Date: 2010-09-25
  • Rev Recd Date: 2011-01-11
  • Publish Date: 2011-05-19
  • To extract nonlinear patterns, preserve the manifold structure, and reduce the projection time, a Fast Kernel Supervised Locality Preserving Projection (FKSLPP) algorithm is proposed. This new algorithm firstly selects a subset of the training set by supervised cluster selection algorithm to do Subset Kernel Principal Component Analysis (SKPCA), and then Supervised Locality Preserving Projection (SLPP) is performed in SKPCA subspace. Experiments results show that compared with SLPP and some other popular feature extraction algorithms, FKSLPP can get higher recognition rates; compared with kernel projection algorithms of state of art, FKSLPP is much faster. In some datasets, FKSLPP can get same or higher recognition rates while costs only one-tenth processing time of the common kernel projection algorithms.
  • loading
  • Loog M and Duin R P W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 732-739.[2] Das K and Nenadic Z. Approximate information discriminant analysis: a computationally simple heteroscedastic feature extraction technique[J]. Pattern Recognition, 2008, 41(5): 1548-1557.[3] He Xiao-fei. Locality preserving projections[D]. [Ph.D. dissertation], The University of Chicago, 2005.[4] 申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J]. 模式识别与人工智能, 2008, 21(2): 233-239.Shen Zhong-hua, Pan Yong-hui, and Wang Shi-tong. A supervised locality preserving projection algorithm for dimensionality reduction[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(2): 233-239.[5] 王晓明, 王士同. 广义的监督局部保留投影算法[J]. 电子与信息学报, 2009, 31(8): 1840-1845.Wang Xiao-ming and Wang Shi-tong. Generalized supervised locality preserving projection[J]. Journal of Electronics Information Technology, 2009, 31(8): 1840-1845.[6] Feng Gui-yu, Hu De-wen, Zhang D, and Zhou Zong-tan. An alternative formulation of kernel LPP with application to image recognition[J]. Neurocomputing, 2006, 69(13-15): 1733-1738.[7] Yang Jian, Jin Zhong, and Yang Jing-yu, et al.Essence of kernel Fisher discriminant: KPCA plus LDA[J]. Pattern Recognition, 2004, 37(10): 2097-2100.[8] Yoshikazu Washizawa. Subset kernel principal component analysis[C]. IEEE International Workshop on Machine Learning for Signal Processing, Grenoble, France, September 2-4, 2009: 1-6.[9] 段明秀. 层次聚类算法的研究及应用[D]. [博士论文], 中南大学, 2009.Duan Ming-Xiu. Research and application of hierarchical clustering algorithm[D]. [Ph.D. dissertation], Central South University, 2009.[10] Theodoridis S and Koutroumbas K. Pattern Recognition[M]. Fourth edition, Beijing: China Machine Press, 2009: 278-280.[11] Rueda L and Herrera M. Linear dimensionality reduction by maximizing the Chernoff distance in the transformed space[J]. Pattern Recognition, 2008, 41(10): 3138-3152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4069) PDF downloads(805) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return