Advanced Search
Volume 32 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Li Hong, Qin Yu-Liang, Li Yan-Peng, Wang Hong-Qiang, Li Xiang. A FrFT Based Algorithm for Doppler Frequency Rate Estimation from LFM Coherent Pulse Train[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2718-2723. doi: 10.3724/SP.J.1146.2009.01438
Citation: Li Hong, Qin Yu-Liang, Li Yan-Peng, Wang Hong-Qiang, Li Xiang. A FrFT Based Algorithm for Doppler Frequency Rate Estimation from LFM Coherent Pulse Train[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2718-2723. doi: 10.3724/SP.J.1146.2009.01438

A FrFT Based Algorithm for Doppler Frequency Rate Estimation from LFM Coherent Pulse Train

doi: 10.3724/SP.J.1146.2009.01438 cstr: 32379.14.SP.J.1146.2009.01438
  • Received Date: 2009-11-06
  • Rev Recd Date: 2010-03-02
  • Publish Date: 2010-11-19
  • LFM signal is widely used in radar application. It is a key technology to obtain the high accuracy estimation of the Doppler frequency rate from the observed LFM signals. In this paper, a Fractional Fourier Transform (FrFT) based Doppler frequency rate estimation algorithm is proposed. The signal energy is congregated in the fractional Fourier transform domain. The signal to noise rate is strengthen and the infection of the frequency rate of LFM signal is eliminated. The coherent phase information is utilized to obtain the Doppler frequency rate estimates. The theoretical analysis indicates that the estimation variance approaches the theoretical low band. The simulation results validate the presented algorithm.
  • loading
  • 冯道旺. 利用径向加速度信息的单站无源定位技术研究[D]. [博士论文], 长沙, 国防科技学技术大学, 2003.[2]冯道旺, 周一宇, 李宗华. 相参脉冲序列多普勒变化率的一种快速高精度测量方法[J].信号处理.2004, 20(1):40-43[3]Feng Dao-wang, Zhou Yi-yu, and Li Zhong-hua. A fast and accurate estimator for Doppler rate-of-change with the coherent pulse train[J]. Signal Processing, 2004, 20(1): 40-43.[4]郁春来, 吕韶昱, 万方等. 基于小波变换的多普勒频率变化率高精度估计方法[J].电子学报.2007, 35(9):1656-1659[5]Yu Chun-lai, L Shao-yu, and Wan Fang, et al.. An accurate estimation algorithm for doppler frequency rate-of-change based on wavelet transform[J]. Acta Electronica Sinica, 2007, 35(9): 1656-1659.[6]郁春来, 万建伟, 占荣辉. 一种PCM相参脉冲序列多普勒频率变化率估计算法[J].电子与信息学报.2008, 30(10):2303-2306浏览[7]Yu Chun-lai, Wan Jian-wei, and Zhan Rong-hui. An estimation algorithm for Doppler frequency rate-of-change with PCM coherent pulse train[J].Journal of Electronics Information Technology.2008, 30(10):2303-2306[8]郁春来, 万方, 占荣辉等. 一种关于LFM 相参脉冲信号多普勒频率变化率的估计算法[J]. 信号处理, 2008, 24(4): 546-550.Yu Chun-lai, Wan Fang, and Zhan Rong-hui, et al.. An estimation algorithm for Doppler frequency rate-of-change with LFM coherent pulse signal. Signal Processing, 2008, 24(4): 546-550.[9]Wang M S, Chan A K, and Chui C K. Linear frequency-modulated signal detection using Radon-ambiguity transform[J].IEEE Transactions on Signal Processing.1998, 46(3):571-586[10]陶然, 邓兵, 王越. 分数阶Fourier变换在信号处理领域的研究进展[J]. 中国科学E辑, 2006, 36(2): 113-136.[11]Tao Ran, Deng Bing, and Wang Yue. Research progress of the fractional Fourier transform in signal processing[J].Science in China Series F: Information Sciences.2006, 49(1):1-25[12]陶然, 张峰, 王越. 分数阶Fourier变换离散化的研究进展[J].中国科学E辑, 2008, 38(4): 481-503.[13]Tao Ran, Deng Bing, and Wang Yue. Research progress on discretization of fractional Fourier transform [J]. Science in China Series F: Information Sciences. 2008, 51(7): 859-880.[14]齐林, 陶然, 周思永等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学E辑, 2003, 33(8): 754-759.[15]Qi Lin, Tao Ran, and Zhou Si-yong, et al.. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J].Science in China Series F: Information Sciences.2004, 47(2):184-198[16]胥嘉佳, 刘渝, 邓振淼. LFM信号参数估计的牛顿迭代方法初始值研究[J]. 电子学报, 2009, 37(3): 598-602.Xu Jia-jia, Liu Yu, and Deng Zhen-miao. The starting point problem of parameters estimation for LFM signal based on Newtons method[J]. Acta Electronica Sinica, 2009, 37(3):598-602.[17]Tretter S A. Estimating the frequency of a noisy sinusoid by linear regression[J]. IEEE Transactions on Information Theory, 1985, IT-31(6): 832-835.[18]Hndel P and Tichavsk P. Frequency rate estimation at high SNR[J].IEEE Transactions on Signal Processing.1997, 45(8):2101-2105[19]Ristic B and Boashash B. Comments on The Cramer-Rao lower bounds for signals with constant amplitude and polynomial phase[J].IEEE Transactions on Signal Processing.1998, 46(6):1708-1709[20]刘建成, 刘忠, 王雪松等. 高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J].电子与信息学报.2007, 29(10):2337-2340浏览[21]Liu Jian-cheng, Liu Zhong, and Wang Xue-song, et al.. SNR analysis of LFM signal with gaussian white noise in fractional fourier transform domain[J].Journal of Electronics Information Technology.2007, 29(10):2337-2340[22]刘建成, 王雪松, 刘忠等. 基于分数阶Fourier变换的LFM信号参数估计精度分析[J].信号处理.2008, 24(2):197-200[23]Liu Jian-cheng, Wang Xue-song, and Liu Zhong, et al. Parameters resolution of LFM signal based on fractional fourier transform[J]. Signal Processing, 2008, 24(2): 197-200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4081) PDF downloads(762) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return