Advanced Search
Volume 32 Issue 8
Sep.  2010
Turn off MathJax
Article Contents
Wu Xi, Zhou Ji-Liu, Xie Ming-Yuan, Luo Dai-Sheng. A Bayesian Constraint Stochastic Framework for DT-MRI White Matter Fiber Tractography[J]. Journal of Electronics & Information Technology, 2010, 32(8): 1786-1791. doi: 10.3724/SP.J.1146.2009.01120
Citation: Wu Xi, Zhou Ji-Liu, Xie Ming-Yuan, Luo Dai-Sheng. A Bayesian Constraint Stochastic Framework for DT-MRI White Matter Fiber Tractography[J]. Journal of Electronics & Information Technology, 2010, 32(8): 1786-1791. doi: 10.3724/SP.J.1146.2009.01120

A Bayesian Constraint Stochastic Framework for DT-MRI White Matter Fiber Tractography

doi: 10.3724/SP.J.1146.2009.01120 cstr: 32379.14.SP.J.1146.2009.01120
  • Received Date: 2009-08-25
  • Rev Recd Date: 2010-02-01
  • Publish Date: 2010-08-19
  • Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) can track the brain white matter fiber by tracing the local tensor orientation and reconstruct the three dimensional image noninvasively. The commonly used tracking method is usually based on the local diffusion information and insufficient to consider the geometrical structure and fractional anisotropy which is constrained by anatomical structure and physiological function of human been. Therefore, a novel method of fiber tracking based on Bayesian constrained stochastic framework is proposed. In this method, the correlation of tracking direction to both the diffusion directions of the current voxel and the structure information of the current fiber segment is considered synthetically. Meanwhile, the two components are constrained by the fractional anisotropy and angle of the fiber curve respectively. The probability distributions of the tracking directions of the next voxel is estimated under the Bayesian constrained stochastic framework. Then, according to the probability distributions, the fiber bundle is sampled with Markov Chain Monte Carlo method and the 3D image of its structure is reconstructed under multiply tracking. By the method, imaging simulations using a synthetic diffusion tensor dataset and imaging experiments using an in vivo brain DT-MRI dataset have been done. The results of the simulations and experiments demonstrate that using the method proposed, brain white matter fiber can be reconstructed properly as expected, more reliably and reproducibly compared with the common methods.
  • loading
  • Basser P, Mattiello J, and LeBihan D. MR diffusion tensorspectroscopy and imaging [J].Biophysical Journal.1994,66(1):259-267[2]Susumu M and Zhang Jiang-yang. Principles of diffusiontensor primer imaging and its applications to basicneuroscience research [J].Neuron.2006, 51(5):527-539[3]Lenglet C, Campbell J S W, and Descoteaux M, et al..Mathematical methods for diffusion MRI processing [J].Neuroimage.2009, 45(1):111-122[4]白衡, 高玉蕊, 王世杰等. DTI 扩散张量的一种稳健估计方法[J]. 计算机研究和发展, 2008, 45(7): 1232-1238.Bai Heng, Gao Yu-rui, and Wang Shi-jie, et al.. A robustdiffusion tensor estimation method for DTI [J]. Journal ofComputer Research and Development, 2008, 45(7):1232-1238.[5]Basser P, Pajevic S, and Pierpaoli C, et al.. In vivo fibertractography using DT-MRI data [J].Magnetic Resonance inMedicine.2000, 44(4):625-6323.0.CO;2-O' target='_blank'>[6]Behrens T E J,Woolrich M W, and Jenkinson M, et al..Characterization and propagation of uncertainty indiffusion-weighted MR imaging [J].Magnetic Resonance inMedicine.2003, 50(5):1077-1088[7]Behrens T E J, Berg H J, and Jbabdi S, et al.. Probabilisticdiffusion tractography with multiple fibre orientations: whatcan we gain? [J].NeuroImage.2007, 34(1):144-155[8]Fan Zhang, Hancock E R, and Goodlett C, et al..Probabilistic white matter fiber tracking using particlefiltering and von Mises-Fisher sampling [J]. Medical ImageAnalysis, 2009, 13(1): 5-18.[9]Sherbondy A J, Dougherty R F, and Ben-Shachar M, et al..ConTrack: Finding the most likely pathways between brainregions using diffusion tractography[J]. Journal of Vision,2008, 8(9): 1-16.[10]Duda R O and Hart P E. Pattern Classification and SceneAnalysis[M]. New York: John Wiley and Sons, 1973: 32-37.[11]Kaden E, Knosche T R, and Anwander A. Parametricspherical deconvolution: Inferring anatomical connectivityusing diffusion MR imaging [J].Neuroimage.2007, 37(2):474-488[12]Bj.rnemo M, Brun A, and Kikinis R, et al.. Regularizedstochastic white matter tractography using diffusion tensorMRI [C]. Proceeding of 5th Medical Image Computing andComputer-Assisted Intervention, Tokyo, 2002: 435-442.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4275) PDF downloads(836) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return