Advanced Search
Volume 32 Issue 7
Aug.  2010
Turn off MathJax
Article Contents
Liu Jian-lei, Feng Da-zheng. An Image Segmentation Approach Based on Two-Dimension Lagrange Continuous Level Set[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1712-1716. doi: 10.3724/SP.J.1146.2009.01111
Citation: Liu Jian-lei, Feng Da-zheng. An Image Segmentation Approach Based on Two-Dimension Lagrange Continuous Level Set[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1712-1716. doi: 10.3724/SP.J.1146.2009.01111

An Image Segmentation Approach Based on Two-Dimension Lagrange Continuous Level Set

doi: 10.3724/SP.J.1146.2009.01111 cstr: 32379.14.SP.J.1146.2009.01111
  • Received Date: 2009-08-21
  • Rev Recd Date: 2010-02-04
  • Publish Date: 2010-07-19
  • In the field of image segmentation, the image segmentation approach based on discrete level set can not accurately segment an image with low SNR value, and the speed of image segmentation is lower. In order to solve these problems, an alternative approach is proposed based on continuous level-set. The level-set function is modeled as a continuous parametric function using the line combination of two-dimension Lagrange basis. The difference equation is derived by minimizing the energy formulation for image segmentation. As a consequence, the minimization of the energy formulation is directly obtained in term of the Lagrange coefficient. The fast segmentation of image with low SNR value is implemented by the numerical solution of the coefficient difference equation that is solved by simple finite-difference methods. Experimental results demonstrate that the proposed approach can gain better perfect effect.
  • loading
  • Osher S and Sethian J A. Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobiformulations[J]. Journal of Computational Physics, 1988,79(1): 12-49.[2] Osher S and Shu C W. High-order essentially nonoscillatoryschemes for Hamilton-Jacobi equation [J]. SIAM Journal ofNumerical Analysis, 1991, 28(4): 907-922.[3] 曹广真, 金亚秋. 基于水平集方法的多源遥感数据融合及城区道路提取[J]. 电子与信息学报, 2007, 29(6): 1464-1470.Cao Guang-zhen and Jin Ya-qiu. Data fusion of multi-sourceremote sensing based on level set method and application tourban road extraction [J]. Journal of Electronics Information Technology, 2007, 29(6): 1464-1470.[4] Kimmel R, Amir A, and Bruckstein A M. Finding shortestpaths on surfaces using level sets propagation [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1995, 17(6): 635-640.[5] 曹宗杰,闵锐,庞伶俐等. 基于统计模型的变分水平集SAR图像分割方法[J]. 电子与信息学报, 2008, 30(12): 2862-2866.Cao Zong-jie, Min Rui, and Pang Ling-li, et al.. A variationallevel set SAR image segmentation approach based onstatistical model [J]. Journal of Electronics InformationTechnology, 2008, 30(12): 2862-2866.[6] 梅雪,夏良正,李久贤. 一种基于变分水平集的红外图像分割算法[J]. 电子与信息学报, 2008, 30(7): 1700-1702.Mei Xue, Xia Liang-zheng, and Li Jiu-xian. A segmentationalgorithm of infrared image based on variational formulationlevel set model [J]. Journal of Electronics InformationTechnology, 2008, 30(7): 1700-1702.[7] 王斌,高新波. 基于水平集接力的图像自动分割方法[J]. 软件学报,2009, 20(5): 1185-1193.Wang Bin and Gao Xin-bo. Automatic image segmentationmethod using sequential level set [J]. Journal of Software,2009, 20(5): 1185-1193.[8] Chan T F and Vese L A. Active contours without edges[J].IEEE Transactions on Image Processing, 2001, 10(2):266-277.[9] Tsai R and Osher S. Level set methods and their applicationsin image science[J]. Communications in MathematicalSciences, 2003, 1(4): 1-20.[10] Lee Suk-ho and Seo Jin-keun. Level set-based bimodalsegmentation with stationary global minimum [J]. IEEETransactions on Image Processing, 2006, 15(9): 2843-2852.[11] Olivier B, Denis F, Philippe T, and Michael U. VariationalB-spline level-set: A linear filtering approach for fastdeformable model evolution [J]. IEEE Transactions on ImageProcessing, 2009, 18(6): 1179-1191.[12] Aubert G, Barlaud M, Faugeras O, and Jehan-Besson S.Image segmentation using active contours: Calculus ofvariations or shape gradients[J]. SIAM Journal on AppliedMathematics, 2003, 63(6): 2128-2154.[13] Gelas A, Bernard O, Friboulet D, and Prost R. Compactlysupported radial basis functions based collocation method forlevel-set evolution in image segmentation[J]. IEEETransactions on Image Processing, 2007, 16(7): 1873-1887.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3669) PDF downloads(921) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return