Advanced Search
Volume 31 Issue 9
Dec.  2010
Turn off MathJax
Article Contents
Zhang Xu-xiu, Qiu Tian-shuang. Random Variable Analogy Based ICA Method[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2104-2108. doi: 10.3724/SP.J.1146.2008.01253
Citation: Zhang Xu-xiu, Qiu Tian-shuang. Random Variable Analogy Based ICA Method[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2104-2108. doi: 10.3724/SP.J.1146.2008.01253

Random Variable Analogy Based ICA Method

doi: 10.3724/SP.J.1146.2008.01253 cstr: 32379.14.SP.J.1146.2008.01253
  • Received Date: 2008-10-06
  • Rev Recd Date: 2009-05-04
  • Publish Date: 2009-09-19
  • This paper defines analogy measure of two random variables, and discusses the principle and algorithm of maximizing non-Gaussianity of observed data with a linear transformation to estimate independent components serially. It also proves the non-polynomial moment theorem by a generalized way, and states the feasibility that substitutes the analogy with the expectation of a non-quadratic smooth even function based on the theorem. A formula to compute sign of above algorithm is given. The algorithm overcomes the contradiction between the objective function and the sign computation formula.Comparing with Maximum likelihood ICA, the analogy is Maximum likelihood function of single source under pre-whited.
  • loading
  • Comon P. Independent component analysis : A new concept[J]? Signal Processing, 1994, 36(3): 287-314.[2]Bell A J and Sejnowski T J. An information-maximizationapproach to blind separation and blind deconvolution[J].Neural Computation.1995, 7:1129-1159[3]Cardoso J F and Adali T. The maximum likelihood approachto complex ICA[C]. The 2006 IEEE International Conferenceon Acoustics, Speech, and Signal Processing(ICASSP),Toulouse, France, May 14-19 2006, Vol.V: 673-676.[4]Hiroe A. Solution of permutation problem in frequencydomain ica, using multivariate probability densityfunctions[C]. 6th International Conference on IndependentComponent Analysis and Blind Source Separation, Carleston,SC, USA, March 5-8, 2006: 601-608.[5]Hyvariene A, Karhunen J, and Oja E. IndependentComponent Analysis[M]. New York, John Wiley Sons Inc.,2001: 165-181.[6]Hyvarinen A and Oja E. Independent component analysis bygeneral nonlinear Hebbian-like learning rules[J]. SignalProcessing, 1998, 64(3): 301-313.[7]Hyvariene A and Oja E. Fast and robust fixed-pointalgorithms for independent component analysis[J].IEEETransactions on Neural Networks.1999, 10(3):626-634
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3075) PDF downloads(900) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return