Advanced Search
Volume 31 Issue 6
Jun.  2009
Turn off MathJax
Article Contents
Jia Yu-ping, Yang Wei, Fu Yao-wen, Zhuang Zhao-wen. A Basic Belief Assignment Construction Method Based on the Information of Measurement Level[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1345-1349. doi: 10.3724/SP.J.1146.2008.01105
Citation: Jia Yu-ping, Yang Wei, Fu Yao-wen, Zhuang Zhao-wen. A Basic Belief Assignment Construction Method Based on the Information of Measurement Level[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1345-1349. doi: 10.3724/SP.J.1146.2008.01105

A Basic Belief Assignment Construction Method Based on the Information of Measurement Level

doi: 10.3724/SP.J.1146.2008.01105 cstr: 32379.14.SP.J.1146.2008.01105
  • Received Date: 2008-09-05
  • Rev Recd Date: 2009-03-10
  • Publish Date: 2009-06-19
  • Dempster rule of combination is a useful fusion operator for decision level recognition fusion. The effective application of this rule depends on the rational construction of corresponding basic belief assignment. Considering the measurement information from each sensor in decision level recognition fusion, this paper suggests a group of principles for constructing basic belief assignment, and then presents a strategy of basic belief assignment construction based on the similarity degree between referential vector and the measurement information. The experiments on artificial data and real data of radar aerial target demonstrate the basic belief assignments constructed by the presented method can be fused by Dempster rule of combination effectively.
  • loading
  • Dempster A. Upper and lower probabilities induced by amultivalued mapping [J].Annals of Math. Statistics.1967, 38:325-339[2]Shafer G. A Mathematical Theory of Evidence [M]. Princeton:Princeton Univ. Press, 1976.[3]Delmotte F and Smets P. Target identification based on thetransferable belief model interpretation of dempster-shafermodel [J]. IEEE Trans. on SMC, Part A: Systems andHumans, 2004, 34(4): 457-471.[4]王壮. C4ISR 系统目标综合识别理论与技术研究[D]. [博士论文], 长沙: 国防科技大学, 2001, 第2 章.[5]Xu L, Krzyzak A, and Suen C. Methods of combiningmultiple classifiers and their applications to handwrittingrecognition [J]. IEEE Trans. on SMC, 1992, 22(3): 418-434.[6]Guo H, Shi W, and Deng Y. Evaluating sensor reliability inclassification problems based on evidence theory [J].IEEETrans. on System, Man and Cybernetics-PART B:Cybernetics.2006, 36(5):970-981[7]黎湘, 付耀文, 景小军, 庄钊文. 多模导引头融合检测研究[J].系统工程与电子技术. 2000, 22(10): 25-26.[8]韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2006, 第11 章: 463-471.[9]Denoex T. A k-nearest neighbor classification rule based onDempster-Shafer theory [J].IEEE Trans. on System, Man,and Cybernetics.1995, 25(5):804-813[10]Matsuyama T. Belief formation from observation and beliefintegration using virtual belief space in Dempster-Shaferprobability model [C]. Proceedings of the 1994 IEEEInterational Conference on Multisensor Fusion andIntegration for Intelligent Systems, Las Vegas, NV, Oct. 1994:379-386.[11]Boudraa A, et al.. Dempster-Shafers basic probabilityassignment based on fuzzy membership functions [J].Electronic Letters on Computer Vision and Image Analysis,2004, 4(1): 1-9.[12]Ahmed A and Deriche M. A new technique for combiningmultiple classifiers using the dempster-shafer theory ofevidence [J]. Journal of Artificial Intelligence Reasearch, 2002,17(11): 333-361.[13]Yaghlane A, Denoeux T, and Mellouli K. Elicitation of expertopinions for constructing belief functions [C]. Proceedings ofIPMU'2006, Paris, France, Jul. 2006, Vol I: 403-411.[14]Lefevre E, et al.. Knowledge modeling methods in theframework of evidence theory: An experimental comparisonfor melanoma detection [C]. IEEE InternationalConference on Systems, Man, and Cybernetics, Nashville,TN, USA, Oct. 2000,Vol. 4: 2806-2811.[15]Denoex T. Construction of predictive belief functions using afrequentist approach [C]. Proceedings of IPMU'2006, Paris,France, Jul. 2006, Vol II: 1412-1419.[16]Aregui A and Denoex T. Consonant belief function inducedby a confidence set of pignistic probabilities [C]. Proceedingsof ECSQARU2007, Hammamet, Tunisia, 2007: 344-355.[17]叶芗芸. 基于神经网络的图象识别方法及应用[D]. [博士论文],上海: 上海交通大学, 1997, 第5 章.[18]Liu W. Analyzing the degree of conflict among belieffunctions [J].Artificial Intelligence.2006, 170:909-924[19]郭华伟, 施文康, 邓勇, 陈智军. 证据冲突: 丢弃, 发现或化解[J]. 系统工程与电子技术, 2007, 29(6): 890-898.[20]Smets P. Analyzing the combination of conflicting belieffunctions [J].Information Fusion.2007, 8(4):387-412[21]Haenni R and Hartmann S. Shedding new light on Zadeh'scriticism of Dempster's rule of combination [C]. 7thInternational Conference on Information Fusion, Univ. ofBerne, Bern, Switzerland, Appl. -Math. 2005: 880-884.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3562) PDF downloads(868) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return