Advanced Search
Volume 31 Issue 2
Dec.  2010
Turn off MathJax
Article Contents
Jin Yi, Ruan Qiu-qi. Kernel Based Orthogonal Locality Preserving Projections for Face Recognition[J]. Journal of Electronics & Information Technology, 2009, 31(2): 283-287. doi: 10.3724/SP.J.1146.2007.01450
Citation: Jin Yi, Ruan Qiu-qi. Kernel Based Orthogonal Locality Preserving Projections for Face Recognition[J]. Journal of Electronics & Information Technology, 2009, 31(2): 283-287. doi: 10.3724/SP.J.1146.2007.01450

Kernel Based Orthogonal Locality Preserving Projections for Face Recognition

doi: 10.3724/SP.J.1146.2007.01450 cstr: 32379.14.SP.J.1146.2007.01450
  • Received Date: 2007-09-11
  • Rev Recd Date: 2007-12-24
  • Publish Date: 2009-02-19
  • In this paper, considering kernel and orthogonal basis functions, a new method named kernel based orthogonal locality preserving projections algorithm, which aims at discovering an embedding that preserves nonlinear information is proposed for face representation and recognition. In this algorithm, first, the nonlinear kernel mapping is used to map the face data into an implicit feature space, and then a linear transformation which produces orthogonal basis functions is performed to preserve locality geometric structures of the face image. Experiments based on both ORL and Yale face database demonstrate the effectiveness of the new algorithm.
  • loading
  • Turk M and Pentland A. Eigenfaces for recognition. Journalof Cognitive Neuroscience, 1991, 3(1): 72-86.[2]Belhumeur P N, Hespanha J P, and Kriegman D J.Eigenfaces vs. fisherfaces: Recognition using class specificlinear projection. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1997, 19(7): 711-720.[3]Bengio Y, Palement J, and Vincent P, et al.. Out-of-sampleextensions for LLE, Isomap, MOS, eigenmaps, and spectralclustering. Advances in Neural Information ProcessingSystems 6. Cambridge, MA: MIT Press, 2003: 177.[4]Roweis S T and Saul L K. Nonlinear dimensionality reductionby locally linear embedding[J].Science.2000, 290(5500):2323-2326[5]Belkin M and Niyogi P. Laplacian eigenmaps and spectraltechniques for embedding and clustering. Advances in NeuralInformation Processing Systems 14, Vancouver: MIT Press,2001: 585-591.[6]Yang M H, Ahuja N, and Kriegman D. Face recognition usingkernel Eigenfaces. Proceedings of International Conference onImage Processing, Vancouver, Canada, September 2000:37-40.[7]Scholkopf B, Smola A, and Muller K R. Nonlinear componentanalysis as a kernel eigenvalues problem[J].Neural Computation.1998, 10(5):1299-1319[8]He Xiaofei and Yan Shuicheng, et al.. Face recognition usinglaplacianfaces[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.2005, 27(3):328-340[9]Deng Cai, He Xiaofei, and Han Lianwei, et al.. OrthogonalLaplacianfaces for face recognition. IEEE Trans. on ImageProcessing, 2006, 15(11): 3608-3614.[10]Cheng J, Liu Q S, and Lu H Q, et al.. Supervised kernellocality preserving projections for face recognition[J].Neurocomputing Letter.2005, 67:443-449[11]祝磊, 朱善安. KSLPP:新的人脸识别算法. 浙江大学学报(工学版), 2007, 41(41): 1066-1069.[12]万海平. 模式识别中核方法若干问题研究. [博士论文], 北京邮电大学, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4153) PDF downloads(1405) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return