Advanced Search
Volume 30 Issue 3
Dec.  2010
Turn off MathJax
Article Contents
Zhu Jing-fu, Huang Feng-gang. The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity[J]. Journal of Electronics & Information Technology, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888
Citation: Zhu Jing-fu, Huang Feng-gang. The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity[J]. Journal of Electronics & Information Technology, 2008, 30(3): 524-528. doi: 10.3724/SP.J.1146.2007.00888

The Equivalence Framework and the Application to Image Denoising of Two Dimensional Wavelet Shrinkage and Anisotropic Diffusivity

doi: 10.3724/SP.J.1146.2007.00888 cstr: 32379.14.SP.J.1146.2007.00888
  • Received Date: 2007-06-05
  • Rev Recd Date: 2007-10-16
  • Publish Date: 2008-03-19
  • Image denoising is one of important technology in image processing. The denoising image can be gotten by shrink the amplitude of wavelet coefficient of noise according to the fact that it is smaller than others in Wavelet Shrinkage (WS). The Anisotropic Diffusivity (AD) completes denoising according to the direction and amplitude of gradient while as far as possible to keep the characteristic of image. In this paper, the equivalence framework of two dimensional wavelet shrinkage and anisotropic diffusivity is proved with experiment. After that, the Anisotropic Wavelet Shrinkage (AWS) is proposed that synthesizes the merits of the wavelet shrinkage and anisotropic diffusivity according to the equivalence. The contrastive experiments show that the AWS is better for image denoising.
  • loading
  • Mallat S and Hwang W L. Singularity detection andprocessing with wavelets[J].IEEE Trans. on Inform. Theory.1992, 38(2):617-643[2]Xu Y S, Weaver J B, and Healy D M, et al.. Wavelettransform domain filters: A spatially selective noise filtrationtechnique[J].IEEE Trans. on Image Proc.1994, 3(6):747-758[3]Donoho D L. Denoising by soft-thresholding[J].IEEE Trans.on Inf Theory.1995, 41(3):613-627[4]Coifman R R and Donoho D L. Translation invariant denoising[C]. In: Wavelets and Statistics: A Antoniadis, GOppenheim, Lecture Notes in Statistics 103. New York:Springer-Verlag, 1995: 125-150.[5]潘泉,孟晋丽,张磊等. 小波滤波方法及应用[J].电子与信息学报.2007, 29(1):236-242浏览[6]Perona P and Malik J. Scale space and edge detection usinganisotropic diffusion[J].IEEE Trans. on Pattern Analysisand Machine Intelligence.1990, 12(7):629-639[7]Charbonnier P, Blanc-Feraud L, and Aubert G, et al.. Twodeterministic half-quadratic regularization algorithms forcomputed imaging[C]. Proceedings of the IEEE ICIP, Austin,TX, November 1994, Vol. 2: 168-172.[8]Andreu F, Ballester C, and Caselles V, et al.. Minimizingtotal variation flow[J]. Differential and Integral Equations,2001, 14(3): 321-360.[9]Shen J. A note on wavelets and diffusions[J].Journal ofComputational Analysis and Application.2003, 5(1):147-158[10]Steidl Gabriele, Weickert Joachim, and Brox Thomas, et al..On the equivalence of soft wavelet shrinkage, total variationdiffusion, total variation regularization, and SIDEs[J].SIAM J. Numerical Analysis.2004, 42(2):686-713[11]吴亚东, 孙世新. 基于二维小波收缩与非线性扩散的混合图像去噪算法[J]. 电子学报, 2006, 34(1): 163-166.Wu Ya-dong and Sun Shi-xin. A new hybrid image de-noisingalgorithm based on 2D wavelet shrinkage and nonlineardiffusion[J]. Acta Electronica Sinica, 2006, 34(1): 163-166.[12]李一亮, 王卫卫. 基于小波维纳滤波和各向异性扩散的图像去噪[J]. 计算机工程与应用, 2006, 42(29): 52-54.Li Yi-liang and Wang Wei-wei. Image denoising based onwiener filtering in wavelet domain and anisotropic diffusion[J].Computer Engineering and Application, 2006, 42(29): 52-54.[13]姜东焕, 冯象初, 宋国乡. 基于非线性小波阈值的各向异性扩散方程[J]. 电子学报, 2006, 34(1): 170-172.Jiang Dong-huan, Feng Xiang-chu, and Song Guo-xiang. Ananisotropic diffusion equation based on nonlinear waveletshrinkage. Acta Electronica Sinica, 2006, 34(1): 170-172.[14]Liu Feng. Diffusion filtering in image processing based onwavelet transform[J].Science in China Series F: InformationSciences.2006, 49(4):494-503[15]Dohono D L and Johnstone I M. Ideal spatial adaptation bywavelet shrinkage[J].Biometrika.1994, 81(3):425-455
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3496) PDF downloads(941) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return