Advanced Search
Volume 30 Issue 10
Jan.  2011
Turn off MathJax
Article Contents
Fan Qing-Hui, Li Xing-Guo, Zhang Guang-Feng. The Application of Threshold Denoising to the MMW Target Radiation Signal[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2356-2359. doi: 10.3724/SP.J.1146.2007.00482
Citation: Fan Qing-Hui, Li Xing-Guo, Zhang Guang-Feng. The Application of Threshold Denoising to the MMW Target Radiation Signal[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2356-2359. doi: 10.3724/SP.J.1146.2007.00482

The Application of Threshold Denoising to the MMW Target Radiation Signal

doi: 10.3724/SP.J.1146.2007.00482 cstr: 32379.14.SP.J.1146.2007.00482
  • Received Date: 2007-04-02
  • Rev Recd Date: 2007-11-09
  • Publish Date: 2008-10-19
  • Threshold denoising in wavelet domain is an efficient method to reduce the white noise which is easy to program, so that it is widely applied to the image and signal denoising. According to the wavelet transformation characteristic of the MMV target radiation signal, the non-negative wavelet coefficient is used to replace the wavelet coefficient of the signal. For the definite threshold, denoising method of the non-negative wavelet coefficient is inferred when the MSE of the reconfigurable signal is minimized. Experiments show that the method can suppress the noise effectively.
  • loading
  • [1] 柳薇, 马争鸣. 基于边缘检测的图像小波阈值去噪方法. 中国图象图形学报, 2002, 7(8): 788-793.Liu W and Ma Z M. Wavelet image threshold denoising basedon edge detection. Journal of Image and Graphics, 2002, 7(8):788-793. [2] Chang S G, Yu B, and vetterli M. Adaptive waveletthresholding for image denoising and compression[J].IEEETrans. on Image Proc.2000, 9(9):1532-1546 [3] 杨福生. 小波变换的工程分析与应用. 北京: 科学出版社,2001: 41-50.Yang F S. Engineering Analysis of Wavelets Transform andApplication. Beijing: Science press, 2001: 41-50. [4] 潘泉, 张磊, 孟晋丽, 等. 小波滤波方法及应用. 北京: 清华大学出版社, 2005: 5-10.Pan Q, Zhang L, and Meng J L, et al.. Wavelet FilteringMethod and Its Application. Beijing: Qinghua UniversityPress, 2005: 5-10. [5] Mallat S and Hwang W L. Singularity detection andprocessing with wavelet[J].IEEE Trans. on Information Theory.1992, 38(2):617-643 [6] Xu Y S, et al.. Wavelet transform domain filters: A spatiallyselective noise filtration technique. IEEE Trans. on ImageProcessing, 1994, 3(6): 747-758. [7] Donoho D. Denoising by soft-thresholding[J].IEEE Trans. onInformation Theory.1995, 41(3):613-627 [8] Berkner K and Wells R O. Smoothness estimates forsoft-threshold denoising via translation invariant wavelettransforms[J].Applied and Computational Harmonic Analysis.2002, 12(1):1-24 [9] Donoho D and Johnstone M. Ideal spatial adaptation bywavelet shrinkage[J].Biometrika.1994, 81(3):425-455 [10] Donoho D and Johnstone M. Adapting to unknownsmoothness via wavelet shrinkage[J].Journal of the AmericanStatistical Association.1995, 90(12):1200-1224 [11] Bruce A G and Gao H Y. Understanding wave shrink:variance and bias estimation[J].Biometrika.1996, 83(4):727-746 [12] 李兴国. 毫米波近感技术及其应用. 北京: 国防工业出版社,1991: 35-42.Li X G. Millimeter-wave Near Sensing Technique and ItsApplication. Beijing: National defence industry press, 1991:35-42. [13] 张磊, 潘泉, 张洪才, 戴冠中.小波域滤波阈值参数c 的选取.电子学报, 2001, 29(3): 400-402.Zhang L, Pan Q, and Zhang H C, et al.. On thedetermination of threshold in threshold based denoising bywavelet transform. Acta Electronica Sinica, 2001, 29(3):400-402. [14] 文鸿雁, 张正禄. 非线性小波变换阈值法去噪改进. 测绘通报, 2006, (3): 18-21.Wen H Y and Zhang Z L. Improvement of denoising ofnonlinear wavelet transform threshold value method. Bulletinof Surveying and Mapping, 2006, (3): 18-21. [15] 潘泉, 孟晋丽, 张磊, 等. 小波滤波方法及应用[J].电子与信息学报.2007, 29(1):236-242浏览
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3071) PDF downloads(817) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return