Wu Yong-Hui, Ji Ke-Feng, Li Yu, Yu Wen-Xian. Feature Selection and Classification of Polarimetric SAR Images Using SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2347-2351. doi: 10.3724/SP.J.1146.2007.00346
Citation:
Wu Yong-Hui, Ji Ke-Feng, Li Yu, Yu Wen-Xian. Feature Selection and Classification of Polarimetric SAR Images Using SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2347-2351. doi: 10.3724/SP.J.1146.2007.00346
Wu Yong-Hui, Ji Ke-Feng, Li Yu, Yu Wen-Xian. Feature Selection and Classification of Polarimetric SAR Images Using SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2347-2351. doi: 10.3724/SP.J.1146.2007.00346
Citation:
Wu Yong-Hui, Ji Ke-Feng, Li Yu, Yu Wen-Xian. Feature Selection and Classification of Polarimetric SAR Images Using SVM[J]. Journal of Electronics & Information Technology, 2008, 30(10): 2347-2351. doi: 10.3724/SP.J.1146.2007.00346
A new feature selection algorithm is presented using SVM, and then it is integrated into the classification procedure of polarimetric SAR images to construct a novel SVM-based classification method. In the novel method, the sequential backward selection strategy is used to search feature subsets, and the number of support vectors is taken as the estimation index. Compared with those using the initial feature set and the classical RELIEF-F algorithm, higher classification accuracy with less or equivalent number of features is observed in a wider range of SVM parameters using the novel method.
[1] Fukuda S and Hirosawa H. Support vector machineclassification of land cover: application to polarimetric SARdata. IEEE International Geoscience and Remote SensingSymposium, Sydney, Australia, July 2001: 187-189. [2] Cloude S R and Pottier E. An entropy based classificationscheme for land applications of polarimetric SAR[J].IEEETrans. on Geoscience and Remote Sensing.1997, 35(1):68-78 [3] Vapnik V N. 许建华, 张学工译. 统计学习理论. 北京: 电子工业出版社, 2004: 364-384. [4] Fukuda S, Katagiri R, and Hirosawa H. Unsupervisedapproach for polarimetric SAR image classification usingsupport vector machines. IEEE International Geoscience andRemote Sensing Symposium, Toronto, Canada, June 2002:2599-2601. [5] Liu Huan and Yu Lei. Toward integrating feature selectionalgorithms for classification and clustering[J].IEEE Trans. onKnowledge and Data Engineering.2005, 17(4):491-502 [6] Pudil P, Novovicova J, and Kittler J. Floating searchmethods in feature selection[J].Pattern Recognition Letters.1994, 15(11):1119-1125 [7] Narendra P M and Fukunaga K. A branch and boundalgorithm for feature subset selection[J].IEEE Trans. onComputers.1977, 26(9):917-922 [8] Kononenko I. Estimation attributes: analysis and extensionsof RELIEF. Proc. 7th European Conference on MachineLearning, Sicily, Italy, April 1994: 171-182.