Advanced Search
Volume 30 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Tan Bei-hai, Xie Sheng-li . Underdetermlned Blind Separation Based on Source Signals Number Estimation[J]. Journal of Electronics & Information Technology, 2008, 30(4): 863-867. doi: 10.3724/SP.J.1146.2006.01414
Citation: Tan Bei-hai, Xie Sheng-li . Underdetermlned Blind Separation Based on Source Signals Number Estimation[J]. Journal of Electronics & Information Technology, 2008, 30(4): 863-867. doi: 10.3724/SP.J.1146.2006.01414

Underdetermlned Blind Separation Based on Source Signals Number Estimation

doi: 10.3724/SP.J.1146.2006.01414 cstr: 32379.14.SP.J.1146.2006.01414
  • Received Date: 2006-09-18
  • Rev Recd Date: 2007-03-19
  • Publish Date: 2008-04-19
  • This paper gives a new method to estimate the number of source signals and recover them by the characteristics of sparse source signals in underdetermined blind separation. It is well known that source signals can be recovered through the two-step algorithms generally. The first step is to estimate the mixture matrix by K-means clustering algorithm using the sensor signals, and then, the shortest path algorithm is used to recover source signals, whereas, people suppose that the number of source signals is known when they estimate the mixture matrix by the K-means clustering algorithm generally. In fact, the number of source signals is unknown or blind, so it is very important to estimate the number of source signals. In this paper, a new two-step algorithm is proposed, which not only can estimate the number of source signals but also get the mixture matrix instead of K-means algorithm through the characteristics of sensor signals. The last simulation results show the algorithm simply, efficient and good performance.
  • loading
  • Jutten C and Herault J. Blind separation of sources, Part I: Anadaptive algorithm based on neuromimetic[J].Signal Processing.1991, 24(1):1-10[2]Hyvarinen A and Oja E. Independent component analysis:algorithms and applications[J].Neural Networks.2000, 13(4-5):411-430[3]Xie Shengli, He Zhaoshui, and Fu Yuli. A note on Stonesconjecture of blind separation[J].Neural Computation.2004, 17(2):245-319[4]Hyvarinen A. Fast and robust fixed-point algorithms forindependent component analysis. IEEE Trans. on NeuralNetworks, 1999, 10(3): 626-634.[5]Zhang Jinlong, Xie Shengli, and He Zhaoshui. Separability theoryfor blind signal separation. Acta. Automatica Sinica, 2004, 30(3):337-344.[6]Belouchrani A and Cardoso J F. Maximum likelihood sourceseparation for discrete sources. In Proceeding of DUSIPCO,Edinburg, Scotland, 1994, 768-771.[7]Zibulevsky M and Pearlmutter B A. Blind source separation bysparse decomposition in a signal dictionary[J].Neural computation.2001, 13(4):863-882[8]Li Yuanqing, Cichocki A, and Amari S. Analysis of sparserepresentation and blind source separation[J].Neural Computation.2004, 16(6):1193-1234[9]Wax M and Kailath T. Detection of signals by informationtheoretic criteria. IEEE Trans. on ASSP, 1985, 33(2): 276-280.[10]张洪渊, 贾鹏, 史习智. 确定盲分离中未知信号源个数的奇异值分解法. 上海交通大学学报, 2001, 35(8): 1155-1158.[11]章新华, 张安清, 孙剑平. 一种信号源数目的盲估计方法. 系统工程与电子技术, 2001, 23(9): 9-11.[12]张翼, 柯亨玉, 文必洋, 吴雄斌. 相位法估计信号源数. 武汉大学学报, 2003, 49(1): 137-140.[13]李广彪, 许士敏. 基于源数估计的盲源分离. 系统仿真学报, 2006,18(2): 485-488.[14]Lee T W, Lewicki M S, Girolami M, and Sejnowski T J. Blindsource separation of more sources than mixtures usingovercomplete representation[J].IEEE Signal Processing Letter.1999,6(4):87-90[15]Lewicki M S and Sejnowski T J. Learning overcompleterepresentations, Neural Computation, 2000, 12(1): 337-365.[16]Bofill P and Zibulevsky M. Underdetermined source separationusing sparse representation[J].Signal Processing.2001, 81(11):2353-2362[17]李远清, 张丽清. 一种数字图像盲增强的新算法. 控制理论与应用, 2003, 20(4): 525-528.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3261) PDF downloads(1007) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return