Advanced Search
Volume 30 Issue 3
Dec.  2010
Turn off MathJax
Article Contents
Huan Ruo-hong, Yang Ru-liang, Yue-Jin . A New Method for Synthetic Aperture Radar Images Feature Extraction and Target Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(3): 554-558. doi: 10.3724/SP.J.1146.2006.01198
Citation: Huan Ruo-hong, Yang Ru-liang, Yue-Jin . A New Method for Synthetic Aperture Radar Images Feature Extraction and Target Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(3): 554-558. doi: 10.3724/SP.J.1146.2006.01198

A New Method for Synthetic Aperture Radar Images Feature Extraction and Target Recognition

doi: 10.3724/SP.J.1146.2006.01198 cstr: 32379.14.SP.J.1146.2006.01198
  • Received Date: 2006-08-15
  • Rev Recd Date: 2007-01-05
  • Publish Date: 2008-03-19
  • This paper presents a new method for synthetic aperture radar images feature extraction and target recognition which based on principal component analysis in wavelet domain and support vector machine. After wavelet decomposition of a SAR image, feature extraction is implemented by picking up principal component of the low-frequency sub-band image. Then, support vector machine is used to perform target recognition. Results are presented to verify that, the correctness of recognition is enhanced obviously, and the method presented in this paper is a effective method for SAR images feature extraction and target recognition.
  • loading
  • Sandirasegaram N and Englisth R. Comparative analysis offeature extraction (2D FFT and wavelet) and classification(Lp metric distances, MLP NN, and HNeT) algorithms forSAR imagery[J].Proc. SPIE.2005, Vol. 5808:314-325[2]Vapnik V N. An overview of statistical learning theory[J].IEEETrans. on Neural Networks.1999, 10(5):988-999[3]Smith L I. A tutorial on principal components analysis.Technique Report. Computer Vision, Department ofComputer Science, University of Otago, 26 February 2002.[4]Puyati W, Walairacht S, and Walairacht A. PCA in waveletdomain for face recognition. IEEE Conf. AdvancedCommunication Technology, Korea, 2006, Vol. 1: 450-455.[5]Safari M, Harandi M T, and Araabi B N. A SVM-basedmethod for face recognition using a wavelet PCArepresentation of faces. IEEE Conf. Image Processing,Singapore, 2004, Vol. 2: 853-856.[6]Zhao Q, Principe J C, and Brennan V L, et al.. Syntheticaperture radar automatic target recognition with threestrategies of learning and representation. Opt. Eng. 2000,39(5): 1230-1244.[7]Ross T D, Worrell S W and Velten V J, et al.. Standard SARATR evaluation experiments using the MSTAR public releasedata set[J].Proc. SPIE.1998, Vol. 3370:566-573[8]Zhao Q and Principe J C. Support vector machines for SARautomatic target recognition[J].IEEE Trans. on Aerospace andElectronic Systems.2001, 37(2):643-654
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3205) PDF downloads(855) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return