Advanced Search
Volume 30 Issue 1
Jan.  2011
Turn off MathJax
Article Contents
Yuan Li, Liu Hong-wei, Bao Zheng . Adaptive Learning of Classifier Parameters for Radar High Range Resolution Profiles Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(1): 198-202. doi: 10.3724/SP.J.1146.2006.00879
Citation: Yuan Li, Liu Hong-wei, Bao Zheng . Adaptive Learning of Classifier Parameters for Radar High Range Resolution Profiles Recognition[J]. Journal of Electronics & Information Technology, 2008, 30(1): 198-202. doi: 10.3724/SP.J.1146.2006.00879

Adaptive Learning of Classifier Parameters for Radar High Range Resolution Profiles Recognition

doi: 10.3724/SP.J.1146.2006.00879 cstr: 32379.14.SP.J.1146.2006.00879
  • Received Date: 2006-06-19
  • Rev Recd Date: 2006-11-27
  • Publish Date: 2008-01-19
  • Radar High Range Resolution Profile (HRRP) is very sensitive to target aspect variation. To deal with this problem, usually, multiple statistical models are built for different target aspect sector when using HRRP for target recognition. Therefore, how to determine target aspect sector number and how to divide target aspect sector play an important role in classifier training. A data driven adaptive learning algorithm is proposed in this paper, which determines the target aspect sector boundary based on a multivariate Gaussian statistical data model and an iteration algorithm, and the target aspect sector number can be determined simultaneously. Comparing with the traditional equal interval target aspect partition approach, the proposed approach can achieve better recognition performance with lower computation complexity. Experimental results based on the measured data show the efficiency of the proposed method.
  • loading
  • Hudson S and Psaltis D. Correlation filters for aircraft identification from radar range profile. IEEE Trans. on AES, 1993, 29(3): 741-748.[2]Li H J and Yang S H. Using range profiles as feature vectors to identify aerospace objects. IEEE Trans. on AP, 1993, 41(3): 261-268.[3]Jacobs S P and Osollivan J A. Automatic target recognition using sequences of high resolution radar-profiles. IEEE Trans. on AES, 2000, 36(2): 364-380.[4]Xing M D, Bao Z, and Pei B N.The properties of high- resolution range profiles[J].Optical Engineering.2002, 41(2):493-504[5]刘宏伟, 杜兰, 袁莉, 保铮. 雷达高分辨距离像目标识别研究进展.电子与信息学报, 2005, 27(8), 1328-1334.[6]Liu Hong-wei, Du Lan, Yuan Li, and Bao Zhen. Progress in radar automatic target recongnition based on high range resolution profile[J].Journal Electronics Information Technology.2005, 27(8):1328-1334[7]Du L, Liu H W, and Bao Z, et al.. A two-distribution compounded statistical model for radar HRRP target recognition[J].IEEE Trans. on SP.2006, 54(6):2226-2238[8]Steinberg B D. Microwave Imaging with Large Antenna Arrays: Radio Camera Principle and Technique [M]. New York: John Wiley and Sons, 1983: 25-223.[9]Webb A R. Gamma mixture models for target recognition[J].Pattern Recognition.2000, 33(12):2045-2054[10]Copsey K and Webb A R. Bayesian gamma mixture model approach to radar target recognition, IEEE Trans. on AES, 2003, 39(4): 1201-1217.[11]杜兰, 刘宏伟, 保铮. 利用目标方位信息改善雷达距离像识别性能. 系统工程与电子技术, 2004.26(8): 1040-1043.[12]Li Q, and Iiavarasan P, et al.. Radar target identification using a combined early-time/late-time e-pulse technique. IEEE Trans. on AP, 1998, 46(9): 1272-1278.[13]Williams R and Westerkamp J. Automatic target recognition of time critical moving targets using 1D high range resolution (HRR) radar. IEEE AES Magazine, 2000, 15(4): 37-43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3325) PDF downloads(880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return