Advanced Search
Volume 29 Issue 9
Jan.  2011
Turn off MathJax
Article Contents
Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304
Citation: Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304

Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes

doi: 10.3724/SP.J.1146.2006.00304 cstr: 32379.14.SP.J.1146.2006.00304
  • Received Date: 2006-03-17
  • Rev Recd Date: 2006-09-13
  • Publish Date: 2007-09-19
  • Two universal bounds for pure additive quantum error correcting codes are obtained by using of Krawtchouk polynomials, and it is proved that the quantum Singleton bound and the asymptotic quantum Hamming bound are just the special cases of those two universal bounds.
  • loading
  • Bennett C H, Divincenzo G, and Smolin J A, et al.. Mixed state entanglement and quantum error correction[J].Phys. Rev. A.1996, 54:3824-3851[2]Knill E and Laflamme R. A theory of quantum error-correcting codes[J].Phys. Rev. A.1997, 55:900-911[3]Calderbank A R, Shor E M, and Shor P W, et al.. Quantum error correction via codes over GF(4)[J].IEEE Trans. on Inform. Theory.1998, 44(4):1369-1387[4]Levershtein V I. Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces[J].IEEE Trans. on Inform. Theory.1995, 41(5):1303-1320
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3195) PDF downloads(791) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return