Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304
Citation:
Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304
Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304
Citation:
Ma Yue-fei. Krawtchouk Polynomials and Upper Bounds for Pure Additive Quantum Error Correcting Codes[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2146-2148. doi: 10.3724/SP.J.1146.2006.00304
Two universal bounds for pure additive quantum error correcting codes are obtained by using of Krawtchouk polynomials, and it is proved that the quantum Singleton bound and the asymptotic quantum Hamming bound are just the special cases of those two universal bounds.
Bennett C H, Divincenzo G, and Smolin J A, et al.. Mixed state entanglement and quantum error correction[J].Phys. Rev. A.1996, 54:3824-3851[2]Knill E and Laflamme R. A theory of quantum error-correcting codes[J].Phys. Rev. A.1997, 55:900-911[3]Calderbank A R, Shor E M, and Shor P W, et al.. Quantum error correction via codes over GF(4)[J].IEEE Trans. on Inform. Theory.1998, 44(4):1369-1387[4]Levershtein V I. Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces[J].IEEE Trans. on Inform. Theory.1995, 41(5):1303-1320