Advanced Search
Volume 29 Issue 9
Jan.  2011
Turn off MathJax
Article Contents
Jiang Ens-ong, Li Meng-chao, Sun Liu-jie. An Improved Method of Kalman Filter Based on Neural Network[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2073-2076. doi: 10.3724/SP.J.1146.2006.00188
Citation: Jiang Ens-ong, Li Meng-chao, Sun Liu-jie. An Improved Method of Kalman Filter Based on Neural Network[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2073-2076. doi: 10.3724/SP.J.1146.2006.00188

An Improved Method of Kalman Filter Based on Neural Network

doi: 10.3724/SP.J.1146.2006.00188 cstr: 32379.14.SP.J.1146.2006.00188
  • Received Date: 2006-02-23
  • Rev Recd Date: 2006-08-14
  • Publish Date: 2007-09-19
  • Kalman filter is a recursive filtering method based on minimum variance estimation, but it assumes that the signals state model is exactly known, which restricts its application in practice. Nevertheless the systems state equation can be obtained through the identification of systems by using neural networks good abilities of non-linear mapping. In contrast to some classic improved algorithm of Kalman filtering, this method has the advantages of wide application range, simple and feasible mathematical modeling. In this paper, the method which integrates neural network and Kalman filter is implemented for image restoration. The experiment result shows that the provided method is effective and available.
  • loading
  • Grewal M S and Andrews A P. Kalman Filtering: Theory and Practice[M]. New Jersey: Prentice Hall, 1993: 1-10.[2]Parkum J E, Poulsen N K, and Holst J. Recursive forgetting algorithms[J].International Journal of Control.1992, 55(1):109-128[3]Safak E. Adaptive modeling, identification, and control of dynamic structural systems, I: theory[J].Journal of Engineering Mechanics, ASCE.1989, 115(11):2386-2403[4]Koh C G and See L M. Identification and uncertainty estimation of structural parameters[J].Journal of Engineering Mechanics, ASCE.1994, 120(6):1219-1237[5]Lin J W, Betti R, and Longman R W, et al.. On-line identification of non-linear structural systems using a variable trace approach[J].Earthquake Engineering and Structural Dynamics.2001, 30(9):1279-1303[6]徐天河,杨元喜. 改进的Sage自适应滤波方法[J]. 测绘科学,2000, 25(3): 22-24. Xu Tian-he and Yang Yuan-xi. The improved method of sage adaptive filtering[J]. Science of Surveying and Mapping, 2000, 25(3): 22-24.[7]邓自立,王建国. 非线性系统自适应推广的Kalman滤波[J].自动化学报,1987, 13(5): 375-379. Deng Zi-li and Wang Jian-guo. Adaptive extended Kalman filtering for nonlinear systems[J]. Acta Automatica Sinica, 1987, 13(5): 375-379.[8]Ahmed N U and Radaideh S M. Modified extended Kalman filtering [J].IEEE Trans. on Automatic Control.1994, 39(6):1322-1326[9]周 荻,胡振坤,胡恒章. 自适应推广Kalman滤波应用于导弹的被动制导问题[J]. 宇航学报,1997, 18(4): 31-36. Zhou Di, Hu Zhen-kun, and Hu Heng-zhang. Adaptive extended Kalman filtering for passive missile guidance problem[J]. Journal of Astronautics,1997, 18(4): 31-36.[10]顾成奎,王正欧. 非平稳环境下提高神经网络辨识能力的新方法[J]. 系统工程学报 2003, 18(4): 300-301. Gu Cheng-kui and Wang Zhe-nou. New method to improve identification ability of neural networks in non-stationary environment[J]. Journal of Systems Engineering, 2003, 18(4): 300-301.[11]于亦凡,周祥龙. 模糊图像的Kalman滤波恢复方法[J]. 青岛大学学报(工程技术版), 2001, 16(3): 67-69. Yu Yi-fan and Zhou Xiang-long. Image Restoration by Kalman Filter[J]. Journal of Qingdao University, 2001. 16(3): 67-69.[12]Parles Alexander C. An accelerated learning algorithm for multiplayer perception networks[J].IEEE Trans.on Neural Networks.1994, 5(3):493-495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4111) PDF downloads(2032) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return