Advanced Search
Volume 29 Issue 3
Jan.  2011
Turn off MathJax
Article Contents
Wang Ding, Wu Ying. Joint Diagonalization of Matrix Based on Improved Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2007, 29(3): 578-581. doi: 10.3724/SP.J.1146.2005.00724
Citation: Wang Ding, Wu Ying. Joint Diagonalization of Matrix Based on Improved Genetic Algorithm[J]. Journal of Electronics & Information Technology, 2007, 29(3): 578-581. doi: 10.3724/SP.J.1146.2005.00724

Joint Diagonalization of Matrix Based on Improved Genetic Algorithm

doi: 10.3724/SP.J.1146.2005.00724 cstr: 32379.14.SP.J.1146.2005.00724
  • Received Date: 2005-06-20
  • Rev Recd Date: 2005-12-14
  • Publish Date: 2007-03-19
  • The paper simplifies the joint diagonalization of matrices into optimization problem which only includes the eigen matrix. For solving the problem conveniently, each row vector of the eigen matrix is parameterized, then utilizes the improved genetic algorithm to get the optimal parameter. The algorithm improves the choose of chromosome and probability of cross with variation, introduces simulated anneal technology into operator of crossing and variation. Finally it unifies the gradient algorithm to seek local optimality. The simulation result verify the algorithm.
  • loading
  • Vanderveen A J and Paulraj A. An analytical constant modulus algorithm. IEEE Trans. on Signal Proc., 1996, 44(5): 1135-1155.[2]Vanderveen A J, Vanderveen M C and Paulraj A. Joint angle and delay estimation using shift-invariance techniques[J].IEEE Trans. on Signal Proc.1998, 46(2):405-418[3]Belouchrani A, Abed-Meraim K, Cardoso J F and Moulines E. A blind source separation technique using second-order statistics[J].IEEE Trans. on Signal Proc.1997, 45(2):434-444[4]Sidiropolus N D, Giannakis G B, and Bro R. Parallel factor analysis in sensor array processing[J].IEEE Trans. on Signal Proc.1999, 44(3):2377-2388[5]Wax M and Sheinvald J. A least squares approach to joint diagonalization. IEEE Trans. on Signal Proc., 1997, 4(2): 52- 53.[6]VanderVeen A J. Joint diagonalization via subspace fitting technique[J].Proc 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 01.2001, 5:2773-2776[7]Moler C and Stewart G W. An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 1973, 241-256.[8]Cardoso J F and Souloumiac A. Blind beamforming for non- Gaussian signals[J].IEE Proc. Radar and Signal Processing.1993, 140(6):362-370[9]Yeredor A. Non-orthogonal joint diagonalization in the least squares sense with application in blind source separation[J].IEEE Trans. on Signal Proc.2002, 50(7):1545-1553[10]王永良, 陈辉, 彭应宁, 万群. 空间谱估计理论与算法. 北京: 清华大学出版社, 2004: 168-173.[11]李敏强, 寇纪凇, 林丹, 李书全. 遗传算法的基本理论与应用. 北京: 科学出版社, 2003: 56-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3299) PDF downloads(782) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return