| Citation: | JING Chuanfang, ZHU Xiaorong. Routing and Resource Scheduling Algorithm Driven by Mixture of Experts in Large-scale Heterogeneous Local Power Communication Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251176 |
| [1] |
CALERO F, CAÑIZARES C A, BHATTACHARYA K, et al. A review of modeling and applications of energy storage systems in power grids[J]. Proceedings of the IEEE, 2023, 111(7): 806–831. doi: 10.1109/JPROC.2022.3158607.
|
| [2] |
WU Dan, SEO G S, XU Lie, et al. Grid integration of offshore wind power: Standards, control, power quality and transmission[J]. IEEE Open Journal of Power Electronics, 2024, 5: 583–604. doi: 10.1109/OJPEL.2024.3390417.
|
| [3] |
LI Yuanzheng, YU Chaofan, SHAHIDEHPOUR M, et al. Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects[J]. Proceedings of the IEEE, 2023, 111(9): 1055–1096. doi: 10.1109/JPROC.2023.3303358.
|
| [4] |
LI Jun, SUN Haiyang, DENG Xiumei, et al. Mobility-aware user scheduling in wireless federated learning with contextual multi-armed bandit[J]. China Communications, 2025, 22(11): 256–272. doi: 10.23919/JCC.fa.2023-0427.202511.
|
| [5] |
LI Hongbo and DUAN Lingjie. Competitive multi-armed bandit games for resource sharing[J]. IEEE Transactions on Mobile Computing, 2025, 24(9): 8393–8404. doi: 10.1109/TMC.2025.3555971.
|
| [6] |
SALAH M M, SAAD R S, ZAKI R M, et al. Multi-armed bandits for resource allocation in UAV-assisted LoRa networks[J]. IEEE Internet of Things Magazine, 2025, 8(2): 40–45. doi: 10.1109/IOTM.001.2400088.
|
| [7] |
GALLI A, MOSCATO V, ROMANO S P, et al. Playing with a multi armed bandit to optimize resource allocation in satellite-enabled 5G networks[J]. IEEE Transactions on Network and Service Management, 2024, 21(1): 341–354. doi: 10.1109/TNSM.2023.3302064.
|
| [8] |
朱晓荣, 贺楚闳. 基于强化学习的大规模多模Mesh网络联合路由选择及资源调度算法[J]. 电子与信息学报, 2024, 46(7): 2773–2782. doi: 10.11999/JEIT231103.
ZHU Xiaorong and HE Chuhong. Joint routing and resource scheduling algorithm for large-scale multi-mode mesh networks based on reinforcement learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2773–2782. doi: 10.11999/JEIT231103.
|
| [9] |
LI Guiyi, OUYANG Yuxiang, and LINLONG Siyu. En route congestion prediction method for air route network based on spatiotemporal graph convolution network and attention[J]. IEEE Intelligent Transportation Systems Magazine, 2025, 17(3): 33–57. doi: 10.1109/MITS.2024.3450953.
|
| [10] |
JI Han, WU Xiping, ZENG Zhihong, et al. Graph attention networks-enabled load balancing for 6G heterogeneous networks with parallel transmission[J]. IEEE Transactions on Vehicular Technology, 2025, 1–14. Early Access. doi: 10.1109/TVT.2025.3636175. (查阅网上资料,未找到本条文献卷期号,请确认).
|
| [11] |
CHEN Chongpu, CHEN Xinbo, YANG Yi, et al. Sparse attention graph convolution network for vehicle trajectory prediction[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18294–18306. doi: 10.1109/TVT.2024.3443850.
|
| [12] |
PARK J and LIM S. LEHAN: Link-feature enhanced heterogeneous graph attention network[J]. IEEE Access, 2022, 10: 86248–86255. doi: 10.1109/ACCESS.2022.3198941.
|
| [13] |
LI Chenxu, FENG Lei, LI Wenjing, et al. Long-term traffic flow prediction: A knowledge-driven graph attention spatio-temporal network[J]. IEEE Transactions on Network and Service Management, 2025, 22(5): 4206–4221. doi: 10.1109/TNSM.2025.3595919.
|
| [14] |
ZHOU Jingxuan, XIAO Wenhua, ZHANG Dayu, et al. Multi-task model fusion with mixture of experts structure[C]. 2023 9th International Conference on Big Data and Information Analytics (BigDIA), Haikou, China, 2023: 387–391. doi: 10.1109/BigDIA60676.2023.10429752.
|
| [15] |
CHENG Guangran, DONG Lu, CAI Wenzhe, et al. Multi-task reinforcement learning with attention-based mixture of experts[J]. IEEE Robotics and Automation Letters, 2023, 8(6): 3812–3819. doi: 10.1109/LRA.2023.3271445.
|
| [16] |
YUAN Renteng, ABDEL-ATY M, XIANG Qiaojun, et al. A temporal multi-gate mixture-of-experts approach for vehicle trajectory and driving intention prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1204–1216. doi: 10.1109/TIV.2023.3336310.
|
| [17] |
RAMBABU R, VADAKKEPAT P, TAN K C, et al. A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2020, 50(12): 5099–5112. doi: 10.1109/TCYB.2019.2909806.
|
| [18] |
DU Hongyang, LIU Guangyuan, LIN Yijing, et al. Mixture of experts for intelligent networks: A large language model-enabled approach[C]. 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 2024: 531–536. doi: 10.1109/IWCMC61514.2024.10592370.
|
| [19] |
YANG Liang, YAN Xiaoqin, LI Sai, et al. Performance analysis of dual-hop mixed PLC/RF communication systems[J]. IEEE Systems Journal, 2022, 16(2): 2867–2878. doi: 10.1109/JSYST.2021.3088096.
|
| [20] |
JING Chuanfang, ZHU Xiaorong, and LIU Xu. Data/model jointly driven routing and resource allocation algorithms for large-scale self-organizing networks for new power systems[C]. 2nd Future Industrial Internet (FII 2024), Shenzhen, China, 2024: 55–76. doi: 10.1007/978-981-96-6736-9_5.
|