| Citation: | GAO Qiannan, ZHANG Jiayu, ZHU Yinggen, WANG Wenjing, JI Jiansong, JI Xiaoyue. Split-Architecture Non-contact Optical Seismocardiography Triggering System for Cardiac MRI[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251098 |
| [1] |
BARNWELL J D, KLEIN J L, STALLINGS C, et al. Image-guided optimization of the ECG trace in cardiac MRI[J]. The International Journal of Cardiovascular Imaging, 2012, 28(3): 587–593. doi: 10.1007/s10554-011-9865-7.
|
| [2] |
国家药监局. 国家药监局关于发布优化全生命周期监管支持高端医疗器械创新发展有关举措的公告[A/OL]. (2025-07-05). https://www.nmpa.gov.cn/xxgk/ggtg/ylqxggtg/ylqxqtggtg/20250703163951182.html, 2025.
National Medical Products Administration (NMPA). Announcement on issuing measures to optimize whole-life-cycle regulation to support the innovative development of high-end medical devices[A/OL]. (2025-07-05). https://www.nmpa.gov.cn/xxgk/ggtg/ylqxggtg/ylqxqtggtg/20250703163951182.html, 2025. (查阅网上资料,未找到本条文献英文翻译,请确认).
|
| [3] |
上海市人民政府. 上海市促进高端医疗器械产业全链条发展行动方案[A/OL]. (2025-09-15). https://www.shanghai.gov.cn/nw12344/20250915/91ccfe1a601d40ecbb579034a030cfa8.html, 2025.
Shanghai Municipal People’s Government. Action plan for promoting the full-chain development of the high-end medical device industry[A/OL]. (2025-09-15). https://www.shanghai.gov.cn/nw12344/20250915/91ccfe1a601d40ecbb579034a030cfa8.html, 2025. (查阅网上资料,未找到本条文献英文翻译,请确认).
|
| [4] |
ABÄCHERLI R, PASQUIER C, ODILLE F, et al. Suppression of MR gradient artefacts on electrophysiological signals based on an adaptive real-time filter with LMS coefficient updates[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2005, 18(1): 41–50. doi: 10.1007/s10334-004-0093-1.
|
| [5] |
TASDELEN B, YAGIZ E, CINBIS B R, et al. Contactless cardiac gating at 0.55T using high-amplitude pilot tone with interference cancellation (HAPTIC)[J]. Magnetic Resonance in Medicine, 2025, 94(3): 1182–1190. doi: 10.1002/mrm.30528.
|
| [6] |
SNYDER C J, DELABARRE L, METZGER G J, et al. Initial results of cardiac imaging at 7 tesla[J]. Magnetic Resonance in Medicine, 2009, 61(3): 517–524. doi: 10.1002/mrm.21895.
|
| [7] |
KRUG J, ROSE G, STUCHT D, et al. Limitations of VCG based gating methods in ultra high field cardiac MRI[J]. Journal of Cardiovascular Magnetic Resonance, 2013, 15(S1): W19. doi: 10.1186/1532-429X-15-S1-W19.
|
| [8] |
ROSENZWEIG S, SCHOLAND N, HOLME H C M, et al. Cardiac and respiratory self-gating in radial MRI using an adapted singular spectrum analysis (SSA-FARY)[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3029–3041. doi: 10.1109/TMI.2020.2985994.
|
| [9] |
CROWE M E, LARSON A C, ZHANG Qiang, et al. Automated rectilinear self-gated cardiac cine imaging[J]. Magnetic Resonance in Medicine, 2004, 52(4): 782–788. doi: 10.1002/mrm.20212.
|
| [10] |
NIJM G M, SAHAKIAN A V, SWIRYN S, et al. Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms[J]. Journal of Magnetic Resonance Imaging, 2008, 28(3): 767–772. doi: 10.1002/jmri.21514.
|
| [11] |
LARSON A C, WHITE R D, LAUB G, et al. Self-gated cardiac cine MRI[J]. Magnetic Resonance in Medicine, 2004, 51(1): 93–102. doi: 10.1002/mrm.10664.
|
| [12] |
ZHU Yingen, GE Yao, WEI Qiang, et al. Camera-based Bi-modal PPG-SCG: Sleep privacy-protected contactless vital signs monitoring[J]. IEEE Internet of Things Journal, 2025, 12(4): 4375–4389. doi: 10.1109/JIOT.2024.3484752.
|
| [13] |
LIU Lin, YU Dongfang, LU Hongzhou, et al. Camera-based seismocardiogram for heart rate variability monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(5): 2794–2805. doi: 10.1109/JBHI.2024.3370394.
|
| [14] |
ZHU Y, LAI H, MO H, et al. Camera-SCG based cardiac gating for magnetic resonance imaging: A feasibility study[J]. (查阅网上资料, 未找到本条文献信息, 请确认).
|
| [15] |
WANG Wenjin, WEISS S, DEN BRINKER A C, et al. Fundamentals of camera-PPG based magnetic resonance imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4378–4389. doi: 10.1109/JBHI.2021.3136603.
|
| [16] |
KORDING F, SCHOENNAGEL B, LUND G, et al. Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study[J]. Magnetic Resonance in Medicine, 2015, 74(5): 1257–1265. doi: 10.1002/mrm.25502.
|
| [17] |
VOLLBRECHT T M, BISSELL M M, KORDING F, et al. Fetal cardiac MRI using Doppler US gating: Emerging technology and clinical implications[J]. Radiology: Cardiothoracic Imaging, 2024, 6(2): e230182. doi: 10.1148/ryct.230182.
|
| [18] |
MARTINEK R, BRABLIK J, KOLARIK J, et al. A low-cost system for seismocardiography-based cardiac triggering: A practical solution for cardiovascular magnetic resonance imaging at 3 tesla[J]. IEEE Access, 2019, 7: 118608–118629. doi: 10.1109/ACCESS.2019.2936184.
|
| [19] |
ZHOU Zhiqin, HUANG Jia, LI Haozhe, et al. Camera seismocardiogram based monitoring of left ventricular ejection time[J]. IEEE Transactions on Biomedical Engineering, 2025, 72(9): 2609–2622. doi: 10.1109/TBME.2025.3548090.
|
| [20] |
WANG Zi, XIAO Min, ZHOU Yirong, et al. Deep separable spatiotemporal learning for fast dynamic cardiac MRI[J]. IEEE Transactions on Biomedical Engineering, 2025, 72(12): 3642–3654. doi: 10.1109/TBME.2025.3574090.
|
| [21] |
LI Ning, TOUS C, DIMOV I P, et al. Design of a low-cost, self-adaptive and MRI-compatible cardiac gating system[J]. IEEE Transactions on Biomedical Engineering, 2023, 70(11): 3126–3136. doi: 10.1109/TBME.2023.3280348.
|
| [22] |
JI Xiaoyue, DONG Zhekang, HAN Yifeng, et al. A brain-inspired hierarchical interactive in-memory computing system and its application in video sentiment analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7928–7942. doi: 10.1109/TCSVT.2023.3275708.
|
| [23] |
ADCOX K, ADLER S S, AFANASIEV S, et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration[J]. Nuclear Physics A, 2005, 757(1/2): 184–283. doi: 10.1016/j.nuclphysa.2005.03.086.
|
| [24] |
SPICHER N, MADERWALD S, LADD M E, et al. Heart rate monitoring in ultra-high-field MRI using frequency information obtained from video signals of the human skin compared to electrocardiography and pulse oximetry[J]. Current Directions in Biomedical Engineering, 2015, 1(1): 69–72. doi: 10.1515/cdbme-2015-0018.
|
| [25] |
DONG Zhekang, JI Xiaoyue, LAI C S, et al. Design and implementation of a flexible neuromorphic computing system for affective communication via memristive circuits[J]. IEEE Communications Magazine, 2023, 61(1): 74–80. doi: 10.1109/MCOM.001.2200272.
|
| [26] |
GANTI V G, GAZI A H, AN S, et al. Wearable seismocardiography-based assessment of stroke volume in congenital heart disease[J]. Journal of the American Heart Association, 2022, 11(18): e026067. doi: 10.1161/JAHA.122.026067.
|
| [27] |
DEMIREL Ö B, ZHANG Chi, YAMAN B, et al. High-fidelity database-free deep learning reconstruction for real-time cine cardiac MRI[C]. 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 2023: 1–4. doi: 10.1109/EMBC40787.2023.10340709.
|
| [28] |
DONG Zhekang, SING LAI C, HE Yufei, et al. Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution[J]. IET Circuits, Devices & Systems, 2019, 13(8): 1241–1248. doi: 10.1049/iet-cds.2018.5062.
|
| [29] |
DONG Zhekang, ZHU Liyan, ZHOU Shiqi, et al. FE-SpikeFormer: A camera-based facial expression recognition method for hospital health monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2025: 1–11. doi: 10.1109/JBHI.2025.3589267. (查阅网上资料,未找到本条文献卷期页码,请确认).
|
| [30] |
SPICHER N, KUKUK M, MADERWALD S, et al. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI[J]. Biomedical Engineering Online, 2016, 15(1): 126. doi: 10.1186/s12938-016-0245-3.
|
| [31] |
LADROVA M, MARTINEK R, NEDOMA J, et al. Monitoring and synchronization of cardiac and respiratory traces in magnetic resonance imaging: A review[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 200–221. doi: 10.1109/RBME.2021.3055550.
|
| [32] |
TOGAWA T, OKAI O, and OSHIMA M. Observation of blood flow E. M. F. in externally applied strong magnetic field by surface electrodes[J]. Medical and Biological Engineering, 1967, 5(2): 169–170. doi: 10.1007/BF02474505.
|
| [33] |
董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.
DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.
|
| [34] |
董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on memristor full-function Pavlov associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
|
| [35] |
周师琦, 王俊帆, 赖俊升, 等. 结合贝叶斯Autoformer的多维自适应短期电力负荷概率预测方法[J]. 电子与信息学报, 2024, 46(12): 4432–4440. doi: 10.11999/JEIT240398.
ZHOU Shiqi, WANG Junfan, LAI Junsheng, et al. Multi-view adaptive probabilistic load forecasting combing Bayesian Autoformer network[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4432–4440. doi: 10.11999/JEIT240398.
|