| Citation: | WANG Yuao, HUANG Yeqi, LI Qingyuan, LIU Yun, JING Shenqi, SHAN Tao, GUO Yongan. Integrating Representation Learning and Knowledge Graph Reasoning for Diabetes and Complications Prediction[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250798 |
| [1] |
American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(S1): S81–S90. doi: 10.2337/dc14-S081.
|
| [2] |
姚欣卉, 肖洪彬, 卞敬琦, 等. 丹参有效成分在治疗糖尿病及其并发症中的作用机制研究进展[J]. 中国实验方剂学杂志, 2021, 27(7): 209–218. doi: 10.13422/j.cnki.syfjx.20210401.
YAO Xinhui, XIAO Hongbin, BIAN Jingqi, et al. New progress in mechanism of Salviae Miltiorrhizae Radix et Rhizoma in treatment of diabetes and its complications[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(7): 209–218. doi: 10.13422/j.cnki.syfjx.20210401.
|
| [3] |
GUAN Zhouyu, LI Huating, LIU Ruhan, et al. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges[J]. Cell Reports Medicine, 2023, 4(10): 101213. doi: 10.1016/j.xcrm.2023.101213.
|
| [4] |
ZHANG Lufang, YU Renyue, CHEN Keya, et al. Enhancing deep vein thrombosis prediction in patients with coronavirus disease 2019 using improved machine learning model[J]. Computers in Biology and Medicine, 2024, 173: 108294. doi: 10.1016/j.compbiomed.2024.108294.
|
| [5] |
RAHMAN M M, AL-AMIN M, and HOSSAIN J. Machine learning models for chronic kidney disease diagnosis and prediction[J]. Biomedical Signal Processing and Control, 2024, 87: 105368. doi: 10.1016/j.bspc.2023.105368.
|
| [6] |
ALTHOBAITI T, ALTHOBAITI S, and SELIM M M. An optimized diabetes mellitus detection model for improved prediction of accuracy and clinical decision-making[J]. Alexandria Engineering Journal, 2024, 94: 311–324. doi: 10.1016/j.aej.2024.03.044.
|
| [7] |
AL-SSULAMI A M, ALSORORI R S, AZMI A M, et al. Improving coronary heart disease prediction through machine learning and an innovative data augmentation technique[J]. Cognitive Computation, 2023, 15(5): 1687–1702. doi: 10.1007/s12559-023-10151-6.
|
| [8] |
金怀平, 薛飞跃, 李振辉, 等. 基于病理图像集成深度学习的胃癌预后预测方法[J]. 电子与信息学报, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
JIN Huaiping, XUE Feiyue, LI Zhenhui, et al. Prognostic prediction of gastric cancer based on ensemble deep learning of pathological images[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2623–2633. doi: 10.11999/JEIT220655.
|
| [9] |
季薇, 王传瑜, 吴迪, 等. 基于跨语种声学分析的帕金森病检测方法[J]. 电子与信息学报, 2024, 46(2): 546–554. doi: 10.11999/JEIT230981.
JI Wei, WANG Chuanyu, WU Di, et al. Parkinson's disease detection method based on cross-language acoustic analysis[J]. Journal of Electronics & Information Technology, 2024, 46(2): 546–554. doi: 10.11999/JEIT230981.
|
| [10] |
GHORBANI M, KAZI A, BAGHSHAH M S, et al. RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data[J]. Medical Image Analysis, 2023, 75: 102272. doi: 10.1016/j.media.2021.102272.
|
| [11] |
ZHAO Qing, LI Jianqiang, ZHAO Linna, et al. Knowledge guided feature aggregation for the prediction of chronic obstructive pulmonary disease with Chinese EMRs[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 20(6): 3343–3352. doi: 10.1109/TCBB.2022.3198798.
|
| [12] |
PHAM T, TAO Xiaohui, ZHANG Ji, et al. Graph-based multi-label disease prediction model learning from medical data and domain knowledge[J]. Knowledge-Based Systems, 2022, 235: 107662. doi: 10.1016/j.knosys.2021.107662.
|
| [13] |
QU Zhe, CUI Lizhen, and XU Yonghui. Disease risk prediction via heterogeneous graph attention networks[C]. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, USA, IEEE, 2022: 3385–3390. doi: 10.1109/BIBM55620.2022.9995491.
|
| [14] |
LU Chang, HAN Tian, and NING Yue. Context-aware health event prediction via transition functions on dynamic disease graphs[C]. The 36th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2022: 4567–4574. doi: 10.1609/aaai.v36i4.20380.
|
| [15] |
熊立鹏, 徐修远, 牛颢, 等. 融合nmODE的术后肺部并发症预测模型[J]. 智能系统学报, 2025, 20(1): 198–205. doi: 10.11992/tis.202401007.
XIONG Lipeng, XU Xiuyuan, NIU Hao, et al. Predicting postoperative pulmonary complications after lung surgery using nmODE[J]. CAAI Transactions on Intelligent Systems, 2025, 20(1): 198–205. doi: 10.11992/tis.202401007.
|
| [16] |
SUN Zhoujian, DONG Wei, SHI Jinlong, et al. Interpretable disease progression prediction based on reinforcement reasoning over a knowledge graph[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(3): 1948–1959. doi: 10.1109/TSMC.2023.3331847.
|
| [17] |
CHEN Xiaojun, JIA Shengbin, and XIANG Yang. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. doi: 10.1016/j.eswa.2019.112948.
|
| [18] |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 27th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
|
| [19] |
LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]. The 29th AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2181–2187. doi: 10.1609/aaai.v29i1.9491.
|
| [20] |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]. The 33rd International Conference on Machine Learning, New York, USA, 2016: 2071–2080.
|
| [21] |
HE Zexue, YAN An, GENTILI A, et al. “Nothing abnormal”: Disambiguating medical reports via contrastive knowledge infusion[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 14232–14240. doi: 10.1609/aaai.v37i12.26665.
|
| [22] |
SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. Rotate: Knowledge graph embedding by relational rotation in complex space[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019: 1–18.
|
| [23] |
QIU Jiezhong, TANG Jian, MA Hao, et al. DeepInf: Social influence prediction with deep learning[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 2110–2119. doi: 10.1145/3219819.3220077.
|
| [24] |
WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT: Knowledge graph attention network for recommendation[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 950–958. doi: 10.1145/3292500.3330989.
|
| [25] |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]. The 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 2009: 452–461.
|
| [26] |
STEFAN N and CUSI K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes[J]. The Lancet Diabetes & Endocrinology, 2022, 10(4): 284–296. doi: 10.1016/S2213-8587(22)00003-1.
|
| [27] |
CARRASCO-ZANINI J, PIETZNER M, KOPRULU M, et al. Proteomic prediction of diverse incident diseases: A machine learning-guided biomarker discovery study using data from a prospective cohort study[J]. The Lancet Digital Health, 2024, 6(7): e470–e479. doi: 10.1016/S2589-7500(24)00087-6.
|
| [28] |
LI Bo, QUAN Haowei, WANG Jiawei, et al. Neural library recommendation by embedding project-library knowledge graph[J]. IEEE Transactions on Software Engineering, 2024, 50(6): 1620–1638. doi: 10.1109/TSE.2024.3393504.
|
| [29] |
YANG Yuhao, HUANG Chao, XIA Lianghao, et al. Knowledge graph self-supervised rationalization for recommendation[C]. The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, USA, 2023: 3046–3056. doi: 10.1145/3580305.3599400.
|
| [30] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–15.
|
| [31] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035.
|