| Citation: | XU Yanbo, ZHU Yuhan, HUANG Xing, LIU Genggeng. Component Placement Algorithm Considering Reagent Type Differences in Cell Reuse for FPVA Biochips[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250731 |
| [1] |
MINHASS W H, POP P, MADSEN J, et al. Architectural synthesis of flow-based microfluidic large-scale integration biochips[C]. Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, Tampere, Finland, 2012: 181–190. doi: 10.1145/2380403.2380437.
|
| [2] |
MINHASS W H, POP P, and MADSEN J. Synthesis of biochemical applications on flow-based microfluidic biochips using constraint programming[C]. Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Cannes, France, 2012: 37–41. (查阅网上资料, 未找到doi信息, 请确认).
|
| [3] |
朱予涵, 刘博文, 黄兴, 等. 完全可编程阀门阵列生物芯片下容错导向的高阶综合算法[J]. 电子与信息学报, 2024, 46(11): 4141–4150. doi: 10.11999/JEIT240049.
ZHU Yuhan, LIU Bowen, HUANG Xing, et al. Fault-tolerance-oriented high-level synthesis algorithm for fully programmable valve array biochips[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4141–4150. doi: 10.11999/JEIT240049.
|
| [4] |
MCDANIEL J, PARKER B, and BRISK P. Simulated annealing-based placement for microfluidic large scale integration (mLSI) chips[C]. Proceedings of the 22nd International Conference on Very Large Scale Integration, Playa del Carmen, Mexico, 2014: 1–6. (查阅网上资料, 未找到doi信息, 请确认).
|
| [5] |
HU Kai, HO T Y, and CHAKRABARTY K. Wash optimization and analysis for cross-contamination removal under physical constraints in flow-based microfluidic biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(4): 559–572. doi: 10.1109/TCAD.2015.2488485.
|
| [6] |
GRIMMER A, WANG Qin, YAO Hailong, et al. Close-to-optimal placement and routing for continuous-flow microfluidic biochips[C]. Proceedings of the 22nd Asia and South Pacific Design Automation Conference, Chiba, Japan, 2017: 530–535. doi: 10.1109/ASPDAC.2017.7858377.
|
| [7] |
CRITES B, KONG K, and BRISK P. Diagonal component expansion for flow-layer placement of flow-based microfluidic biochips[J]. ACM Transactions on Embedded Computing Systems, 2017, 16(5s): 126. doi: 10.1145/3126529.
|
| [8] |
CHEN Zhisheng, HUANG Xing, GUO Wenzhong, et al. Physical synthesis of flow-based microfluidic biochips considering distributed channel storage[C]. Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019: 1525–1530. doi: 10.23919/DATE.2019.8715269.
|
| [9] |
王钦. 微流控生物芯片流体与控制协同物理设计算法研究[D]. [博士论文], 清华大学, 2018. doi: 10.27266/d.cnki.gqhau.2018.000723.
WANG Qin. Research on control-fluidic physical CoDesign algorithm for microfluidic biochips[D]. [Ph. D. dissertation], Tsinghua University, 2018. doi: 10.27266/d.cnki.gqhau.2018.000723.
|
| [10] |
朱予涵, 黄鸿斌, 林泓星, 等. 连续微流控生物芯片下基于序列对的流层物理设计算法[J]. 计算机辅助设计与图形学学报, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.
ZHU Yuhan, HUANG Hongbin, LIN Hongxing, et al. Sequence-pair-based flow-layer physical design algorithm for continuous-flow microfluidic biochips[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(4): 535–544. doi: 10.3724/SP.J.1089.2022.19445.
|
| [11] |
刘耿耿, 叶正阳, 朱予涵, 等. 连续微流控生物芯片下一种多阶段启发式的流层物理协同设计算法[J]. 电子与信息学报, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.
LIU Genggeng, YE Zhengyang, ZHU Yuhan, et al. A multi-stage heuristic flow-layer physical codesign algorithm for continuous-flow microfluidic biochips[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3401–3409. doi: 10.11999/JEIT221155.
|
| [12] |
FIDALGO L M and MAERKL S J. A software-programmable microfluidic device for automated biology[J]. Lab on a Chip, 2011, 11(9): 1612–1619. doi: 10.1039/C0LC00537A.
|
| [13] |
TSENG T M, LI Bing, HO T Y, et al. Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping[C]. Proceedings of the 52nd ACM/EDAC/IEEE Design Automation Conference, San Francisco, USA, 2015: 1–6. doi: 10.1145/2744769.2744899.
|
| [14] |
TSENG T M, LI Bing, LI Mengchu, et al. Reliability-aware synthesis with dynamic device mapping and fluid routing for flow-based microfluidic biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(12): 1981–1994. doi: 10.1109/TCAD.2016.2547902.
|
| [15] |
CHOUDHARY G, PAL S, KUNDU D, et al. Transport-free module binding for sample preparation using microfluidic fully programmable valve arrays[C]. Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2020: 1335–1338. doi: 10.23919/DATE48585.2020.9116370.
|
| [16] |
DATTA P, CHAKRABORTY A, and PAL R K. Design optimization for programmable microfluidic devices integrating contamination removal and capacity-wastage-aware washing[J]. IETE Journal of Research, 2020, 66(6): 781–796. doi: 10.1080/03772063.2020.1811784.
|
| [17] |
KUNDU D, GIRI J, MARUYAMA S, et al. Fluid-to-cell assignment and fluid loading on programmable microfluidic devices for bioprotocol execution[J]. Integration, 2021, 78: 95–109. doi: 10.1016/j.vlsi.2020.12.004.
|
| [18] |
YU H C, LIN Y H, CHEN Zhiyang, et al. Contamination-aware synthesis for programmable microfluidic devices[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 5016–5029. doi: 10.1109/TCAD.2021.3134892.
|
| [19] |
LIU Genggeng, ZHU Yuhan, GUO Wenzhong, et al. Fault-tolerance-oriented physical design for fully programmable valve array biochips[C]. Proceedings of the 60th ACM/IEEE Design Automation Conference, San Francisco, USA, 2023: 1–6. doi: 10.1109/DAC56929.2023.10247720.
|
| [20] |
KUMAR M, KHAN A K, ROY S, et al. Accelerating fluid loading in sample preparation with fully programmable valve arrays[C]. Proceedings of the 37th International Conference on VLSI Design and 23rd International Conference on Embedded Systems (VLSID), Kolkata, India, 2024: 402–407. doi: 10.1109/VLSID60093.2024.00073.
|
| [21] |
ZHU Yuhan, LIU Genggeng, GUO Wenzhong, et al. FTCD: Fault-tolerant co-design of flow and control layers for fully programmable valve array biochips[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025, 44(7): 2669–2682. doi: 10.1109/TCAD.2025.3525615.
|
| [22] |
CAI Huayang, LIU Genggeng, GUO Wenzhong, et al. Adaptive control-logic routing for fully programmable valve array biochips using deep reinforcement learning[C]. Proceedings of the 29th Asia and South Pacific Design Automation Conference, Incheon, Korea, 2024: 564–569. doi: 10.1109/ASP-DAC58780.2024.10473962.
|
| [23] |
HUANG Xing, CAI Huayang, GUO Wenzhong, et al. Control-logic synthesis of fully programmable valve array using reinforcement learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(1): 277–290. doi: 10.1109/TCAD.2023.3309740.
|
| [24] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[J]. arXiv preprint arXiv: 1312.5602, 2013. doi: 10.48550/arXiv.1312.5602. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|