Citation: | LIN Zhiping, XIAO Liang, CHEN Hongyi, XU Xiaoyu, LI Jieling. Collaborative Inference for Large Language Models Against Jamming Attacks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250675 |
[1] |
任磊, 王海腾, 董家宝, 等. 工业大模型: 体系架构、关键技术与典型应用[J]. 中国科学: 信息科学, 2024, 54(11): 2606–2622. doi: 10.1360/SSI-2024-0185.
REN Lei, WANG Haiteng, DONG Jiabao, et al. Industrial foundation model: Architecture, key technologies, and typical applications[J]. SCIENTIA SINICA Informationis, 2024, 54(11): 2606–2622. doi: 10.1360/SSI-2024-0185.
|
[2] |
张青龙, 韩锐, 刘驰. 云边协同大模型块粒度重训方法[J]. 电子学报, 2025, 53(2): 287–300. doi: 10.12263/DZXB.20240518.
ZHANG Qinglong, HAN Rui, and LIU Chi. Cloud-edge collaborative retraining of foundation models at the block granularity[J]. Acta Electronica Sinica, 2025, 53(2): 287–300. doi: 10.12263/DZXB.20240518.
|
[3] |
WU Shengqiong, FEI Hao, QU Lweiji, et al. NExT-GPT: Any-to-any multimodal LLM[C]. Proceedings of the 41st International Conference on Machine Learning (ICML), Vienna, Austria, 2024: 1–37.
|
[4] |
ZHOU Zixuan, NING Xuefei, HONG Ke, et al. A survey on efficient inference for large language models[EB/OL]. https://arxiv.org/abs/2404.14294, 2024.
|
[5] |
DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. https://arxiv.org/abs/2501.12948, 2025.
|
[6] |
REN Yuzheng, ZHANG Haijun, YU F R, et al. Industrial internet of things with large language models (LLMs): An intelligence-based reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2025, 24(5): 4136–4152. doi: 10.1109/TMC.2024.3522130.
|
[7] |
ZHANG Xinyuan, NIE Jiangtian, HUANG Yudong, et al. Beyond the cloud: Edge inference for generative large language models in wireless networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(1): 643–658. doi: 10.1109/TWC.2024.3497923.
|
[8] |
MOHAMMED T, JOE-WONG C, BABBAR R, et al. Distributed inference acceleration with adaptive DNN partitioning and offloading[C]. Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, Canada, 2020: 854–863. doi: 10.1109/INFOCOM41043.2020.9155237.
|
[9] |
HE Ying, FANG Jingcheng, YU F R, et al. Large language models (LLMs) inference offloading and resource allocation in cloud-edge computing: An active inference approach[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11253–11264. doi: 10.1109/TMC.2024.3415661.
|
[10] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 159.
|
[11] |
ALAYRAC J B, DONAHUE J, LUC P, et al. Flamingo: A visual language model for few-shot learning[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1723.
|
[12] |
KOH J Y, FRIED D, and SALAKHUTDINOV R R. Generating images with multimodal language models[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 939.
|
[13] |
LIU Shilong, ZENG Zhaoyang, REN Tianhe, et al. Grounding DINO: Marrying dino with grounded pre-training for open-set object detection[C]. Proceedings of the 18th European Conference on Computer Vision, Milan, Italy, 2024: 38–55. DOI: 10.1007/978-3-031-72970-6_3.
|
[14] |
XIE Gaochang, XIONG Zehui, ZHANG Xinyuan, et al. GAI-IOV: Bridging generative AI and vehicular networks for ubiquitous edge intelligence[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 12799–12814. doi: 10.1109/TWC.2024.3396276.
|
[15] |
YU Zhongzhi, WANG Zheng, LI Yuhan, et al. EDGE-LLM: Enabling efficient large language model adaptation on edge devices via unified compression and adaptive layer voting[C]. Proceedings of the 61st ACM/IEEE Design Automation Conference, San Francisco, USA, 2024: 1–6. DOI: 10.1145/3649329.3658473.
|
[16] |
FRANTAR E and ALISTARH D. SparseGPT: Massive language models can be accurately pruned in one-shot[C]. Proceedings of the 40th International Conference on Machine Learning, Honolulu, USA, 2023: 414.
|
[17] |
FRANTAR E, ASHKBOOS S, HOEFLER T, et al. OPTQ: Accurate post-training quantization for generative pre-trained transformers[C]. Proceedings of the 40th International Conference on Machine Learning, Kigali, Rwanda, 2023: 1–16.
|
[18] |
FRANTAR E, KURTIC E, and ALISTARH D. M-FAC: Efficient matrix-free approximations of second-order information[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 1140. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
|
[19] |
MA Xinyin, FANG Gongfan, and WANG Xiachao. LLM-pruner: On the structural pruning of large language models[C]. Proceedings of the 37th International Conference on Neural Information Processing Systems, New Orleans, USA, 2023: 950.
|
[20] |
CHEN M H, LIANG Ben, and DONG Min. Multi-user multi-task offloading and resource allocation in mobile cloud systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6790–6805. doi: 10.1109/TWC.2018.2864559.
|
[21] |
NGUYEN M D, AJIB W, ZHU Weiping, et al. Integrated user association, computation offloading, resource allocation, and UAV trajectory control against jamming for UAV-based wireless networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(7): 5588–5604. doi: 10.1109/TWC.2025.3547975.
|
[22] |
LV Zefang, XIAO Liang, DU Yousong, et al. Multi-agent reinforcement learning based UAV swarm communications against jamming[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9063–9075. doi: 10.1109/TWC.2023.3268082.
|
[23] |
LIN Zhiping, XIAO Liang, CHEN Hongyi, et al. Edge-assisted collaborative perception against jamming and interference in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(1): 860–874. doi: 10.1109/TWC.2024.3510601.
|
[24] |
XIAO Liang, LU Xiaozhen, XU Tangwei, et al. Reinforcement learning-based mobile offloading for edge computing against jamming and interference[J]. IEEE Transactions on Communications, 2020, 68(10): 6114–6126. doi: 10.1109/TCOMM.2020.3007742.
|
[25] |
QU Guanqiao, CHEN Qiyuan, WEI Wei, et al. Mobile edge intelligence for large language models: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2025. doi: 10.1109/COMST.2025.3527641. (查阅网上资料,未找到本条文献卷期号与页码信息,请确认).
|
[26] |
AGRAWAL A, KEDIA N, PANWAR A, et al. Taming throughput-latency tradeoff in LLM inference with Sarathi-Serve[C]. Proceedings of the 18th USENIX Symposium on Operating Systems Design and Implementation, Santa Clara, USA, 2024: 117–134.
|
[27] |
GIRDHAR R, EL-NOUBY A, LIU Zhuang, et al. ImageBind one embedding space to bind them all[C]. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 15180–15190. doi: 10.1109/CVPR52729.2023.01457.
|
[28] |
SHANKAR S, ZAMFIRESCU-PEREIRA J D, HARTMANN B, et al. Who validates the validators? aligning LLM-assisted evaluation of LLM outputs with human preferences[C]. Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology, Pittsburgh, USA, 2024: 131. doi: 10.1145/3654777.3676450.
|