| Citation: | ZHENG Qinghe, LI Binglin, YU Zhiguo, JIANG Weiwei, ZHU Zhengyu, XU Chi, HUANG Chongwen, GUI Guan. Research Progress of Deep Learning Enabled Automatic Modulation Classification Technology[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250674 |
| [1] |
SHAFIE A, YANG Nan, HAN Chong, et al. Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities[J]. IEEE Network, 2023, 37(3): 162–169. doi: 10.1109/MNET.118.2200057.
|
| [2] |
YOSHIDA M, KASAI K, HIROOKA T, et al. Dual-polarization on-line 256 and 512 QAM digital coherent transmission[C]. Optical Fiber Communications Conference and Exhibition (OFC), San Diego, USA, 2019: 1–3. doi: 10.1364/OFC.2019.M2H.4.
|
| [3] |
HANNA S, DICK C, and CABRIC D. Signal processing-based deep learning for blind symbol decoding and modulation classification[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 82–96. doi: 10.1109/JSAC.2021.3126088.
|
| [4] |
LIU Mingqian, QU Nan, SHANG Bodong, et al. Energy and spectrum efficient blind equalization with unknown constellation for air-to-ground multipath UAV communications[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1357–1368. doi: 10.1109/TGCN.2021.3073914.
|
| [5] |
WANG Yang, ZHOU Xue, LIAO Xi, et al. Channel measurements and multipath characterization for indoor sub-terahertz communication[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4393–4407. doi: 10.1109/TVT.2024.3493119.
|
| [6] |
JIANG Hao, SHI Wangqi, CHEN Zhen, et al. Dynamic channel modeling of fluid antenna systems in UAV communications[J]. IEEE Wireless Communications Letters, 2025, 14(10): 3169–3173. doi: 10.1109/LWC.2025.3588223.
|
| [7] |
JIANG Hao, SHI Wangqi, ZHANG Zaichen, et al. Large-scale RIS enabled air-ground channels: Near-field modeling and analysis[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1074–1088. doi: 10.1109/TWC.2024.3504839.
|
| [8] |
REBHI M, HASSAN K, RAOOF K, et al. Sparse code multiple access: Potentials and challenges[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1205–1238. doi: 10.1109/OJCOMS.2021.3081166.
|
| [9] |
CHEN Zhen, GUO Yeyong, ZHANG Peichang, et al. Physical layer security improvement for hybrid RIS-assisted MIMO communications[J]. IEEE Communications Letters, 2024, 28(11): 2493–2497. doi: 10.1109/LCOMM.2024.3427010.
|
| [10] |
PANAGIOTOU P, ANASTASOPOULOS A, and POLYDOROS A. Likelihood ratio tests for modulation classification[C]. The 21st Century Military Communications. Architectures and Technologies for Information Superiority, Los Angeles, USA, 2000: 670–674. doi: 10.1109/MILCOM.2000.904013.
|
| [11] |
闫文康, 闫毅, 范亚楠, 等. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968.
YAN Wenkang, YAN Yi, FAN Yanan, et al. A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation[J]. Chinese Journal of Space Science, 2021, 41(6): 968–975. doi: 10.11728/cjss2021.06.968.
|
| [12] |
陈啸锋, 张茜茜, 桂冠. 基于渐进式神经架构搜索的自动调制分类方法[J]. 太赫兹科学与电子信息学报, 2024, 22(11): 1289–1295. doi: 10.11805/TKYDA2023080.
CHEN Xiaofeng, ZHANG Xixi, and GUI Guan. Progressive neural architecture search based automatic modulation classification method[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22(11): 1289–1295. doi: 10.11805/TKYDA2023080.
|
| [13] |
王栋, 崔天舒, 姬丽彬, 等. 基于迁移学习的自动调制分类方法[J/OL]. 北京航空航天大学学报, https://doi.org/10.13700/j.bh.1001-5965.2024.0231, 2024.
WANG Dong, CUI Tianshu, JI Libin, et al. Automatic modulation classification based on transfer learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, https://doi.org/10.13700/j.bh.1001-5965.2024.0231, 2024.
|
| [14] |
ZHENG Qinghe, TIAN Xinyu, YU Zhiguo, et al. Robust automatic modulation classification using asymmetric trilinear attention net with noisy activation function[J]. Engineering Applications of Artificial Intelligence, 2025, 141: 109861. doi: 10.1016/j.engappai.2024.109861.
|
| [15] |
ZHENG Qinghe, TIAN Xinyu, YU Zhiguo, et al. DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106082. doi: 10.1016/j.engappai.2023.106082.
|
| [16] |
TEKBıYıK K, EKTI A R, GÖRÇIN A, et al. Robust and fast automatic modulation classification with CNN under multipath fading channels[C]. IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–6. doi: 10.1109/VTC2020-Spring48590.2020.9128408.
|
| [17] |
LUO Zhongqiang, XIAO Wenshi, ZHANG Xueqin, et al. RLITNN: A multi-channel modulation recognition model combining multi-modal features[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19083–19097. doi: 10.1109/TWC.2024.3478752.
|
| [18] |
MENG Fan, CHEN Peng, WU Lenan, et al. Automatic modulation classification: A deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10760–10772. doi: 10.1109/TVT.2018.2868698.
|
| [19] |
CHEN Yufan, SHAO Wei, LIU Jin, et al. Automatic modulation classification scheme based on LSTM with random erasing and attention mechanism[J]. IEEE Access, 2020, 8: 154290–154300. doi: 10.1109/ACCESS.2020.3017641.
|
| [20] |
ZHENG Qinghe, ZHAO Penghui, LI Yang, et al. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification[J]. Neural Computing and Applications, 2021, 33(13): 7723–7745. doi: 10.1007/s00521-020-05514-1.
|
| [21] |
ZHANG Zufan, LUO Hao, WANG Chun, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521–13531. doi: 10.1109/TVT.2020.3030018.
|
| [22] |
CAI Jinging, GAN Fengming, CAO Xianghai, et al. Signal modulation classification based on the transformer network[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1348–1357. doi: 10.1109/TCCN.2022.3176640.
|
| [23] |
HAMIDI-RAD S and JAIN S. MCformer: A transformer based deep neural network for automatic modulation classification[C]. IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685815.
|
| [24] |
HAO Xiaofeng, ZHANG Huadi, and GUO Rui. Digital modulation recognition based on high-order cumulants and P-LSTM[J]. KSII Transactions on Internet and Information Systems, 2024, 18(11): 3324–3338. doi: 10.3837/tiis.2024.11.013.
|
| [25] |
USSIPOV N, AKHTANOV S, ZHANABAEV Z, et al. Automatic modulation classification for MIMO system based on the mutual information feature extraction[J]. IEEE Access, 2024, 12: 68463–68470. doi: 10.1109/ACCESS.2024.3400448.
|
| [26] |
HUYNH-THE T, NGUYEN T V, PHAM Q V, et al. MIMO-OFDM modulation classification using three-dimensional convolutional network[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6738–6743. doi: 10.1109/TVT.2022.3159254.
|
| [27] |
BAI Jing, LIU Xuebo, WANG Yiran, et al. Integrating prior knowledge and contrast feature for signal modulation classification[J]. IEEE Internet of Things Journal, 2024, 11(12): 21461–21473. doi: 10.1109/JIOT.2024.3377916.
|
| [28] |
HUANG Sai, HE Jiashuo, YANG Zheng, et al. Generalized automatic modulation classification for OFDM systems under unseen synthetic channels[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11931–11941. doi: 10.1109/TWC.2024.3386762.
|
| [29] |
FU Xue, GUI Guan, WANG Yu, et al. Lightweight automatic modulation classification based on decentralized learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(1): 57–70. doi: 10.1109/TCCN.2021.3089178.
|
| [30] |
ZHANG Haozheng, HUANG Ming, YANG Jingjing, et al. A data preprocessing method for automatic modulation classification based on CNN[J]. IEEE Communications Letters, 2021, 25(4): 1206–1210. doi: 10.1109/LCOMM.2020.3044755.
|
| [31] |
杨洁, 董标, 付雪, 等. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022, 43(7): 134–142. doi: 10.11959/j.issn.1000-436x.2022145.
YANG Jie, DONG Biao, FU Xue, et al. Lightweight decentralized learning-based automatic modulation classification method[J]. Journal on Communications, 2022, 43(7): 134–142. doi: 10.11959/j.issn.1000-436x.2022145.
|
| [32] |
郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.
GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.
|
| [33] |
OIKONOMOU T K, EVGENIDIS N G, NIXARLIDIS D G, et al. CNN-based automatic modulation classification under phase imperfections[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1508–1512. doi: 10.1109/LWC.2024.3379198.
|
| [34] |
MOHSEN S, ALI A M, and EMAM A. Automatic modulation recognition using CNN deep learning models[J]. Multimedia Tools and Applications, 2024, 83(3): 7035–7056. doi: 10.1007/s11042-023-15814-y.
|
| [35] |
CHAHIL S T H, ZAKWAN M, KHAN K, et al. Performance analysis of different signal representations and optimizers for CNN based automatic modulation classification[J]. Wireless Personal Communications, 2024, 139(4): 2503–2528. doi: 10.1007/s11277-024-11722-y.
|
| [36] |
龚安, 张贵临, 牟伟清, 等. 基于多层小波分解卷积神经网络的自动调制识别方法[J/OL]. 无线电通信技术, https://link.cnki.net/urlid/13.1099.TN.20241125.1432.004, 2024.
GONG An, ZHANG Guilin, MU Weiqing, et al. Automatic modulation recognition method based on multi-layer wavelet decomposition convolutional neural network[J/OL]. Radio Communications Technology, https://link.cnki.net/urlid/13.1099.TN.20241125.1432.004, 2024.
|
| [37] |
袁博文, 秦怀涛, 易卫明, 等. 基于卷积神经网络的数字调制分类识别[J]. 无线通信技术, 2023, 32(3): 54–57,62. doi: 10.3969/j.issn.1003-8329.2023.03.011.
YUAN Bowen, QIN Huaitao, YI Weiming, et al. Classification and recognition of digital modulation based on convolutional neural network[J]. Wireless Communication Technology, 2023, 32(3): 54–57,62. doi: 10.3969/j.issn.1003-8329.2023.03.011.
|
| [38] |
陈昊, 郭文普, 康凯, 等. 基于卷积自适应降噪网络的自动调制识别方法[J]. 无线电工程, 2025, 55(2): 291–297. doi: 10.3969/j.issn.1003-3106.2025.02.008.
CHEN Hao, GUO Wenpu, KANG Kai, et al. Automatic modulation recognition method based on convolutional adaptive denoising network[J]. Radio Engineering, 2025, 55(2): 291–297. doi: 10.3969/j.issn.1003-3106.2025.02.008.
|
| [39] |
ZHENG Qinghe, SAPONARA S, TIAN Xinyu, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659–671. doi: 10.1007/s11571-023-10015-7.
|
| [40] |
HAMZA M A, HASSINE S B H, LARABI-MARIE-SAINTE S, et al. Optimal bidirectional LSTM for modulation signal classification in communication systems[J]. Computers, Materials & Continua, 2022, 72(2): 3055–3071. doi: 10.32604/cmc.2022.024490.
|
| [41] |
ELSAGHEER M M and RAMZY S M. A hybrid model for automatic modulation classification based on residual neural networks and long short term memory[J]. Alexandria Engineering Journal, 2023, 67: 117–128. doi: 10.1016/j.aej.2022.08.019.
|
| [42] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460.
|
| [43] |
杨宵, 姚爱琴, 孙运强, 等. 基于CBAM-GRU的通信信号自动调制识别[J]. 遥测遥控, 2024, 45(5): 73–81. doi: 10.12347/j.ycyk.20240606002.
YANG Xiao, YAO Aiqin, SUN Yunqiang, et al. Automatic modulation and recognition of communication signals based on CBAM-GRU[J]. Journal of Telemetry, Tracking and Command, 2024, 45(5): 73–81. doi: 10.12347/j.ycyk.20240606002.
|
| [44] |
HUANG Sai, DAI Rui, HUANG Juanjuan, et al. Automatic modulation classification using gated recurrent residual network[J]. IEEE Internet of Things Journal, 2020, 7(8): 7795–7807. doi: 10.1109/JIOT.2020.2991052.
|
| [45] |
李鸣皓, 解志斌, 颜培玉, 等. 基于多注意力残差网络和GRU的自动调制识别算法[J]. 无线电工程, 2025, 55(1): 36–44. doi: 10.3969/j.issn.1003-3106.2025.01.005.
LI Minghao, XIE Zhibin, YAN Peiyu, et al. Automatic modulation recognition algorithm based on multi-attention residual network and GRU[J]. Radio Engineering, 2025, 55(1): 36–44. doi: 10.3969/j.issn.1003-3106.2025.01.005.
|
| [46] |
ZHANG Ziwei, ZHU Mengtao, LI Yunjie, et al. Joint recognition and parameter estimation of cognitive radar work modes with LSTM-transformer[J]. Digital Signal Processing, 2023, 140: 104081. doi: 10.1016/j.dsp.2023.104081.
|
| [47] |
HOU Dongbin, LI Lixin, LIN Wensheng, et al. ClST: A convolutional transformer framework for automatic modulation recognition by knowledge distillation[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 8013–8028. doi: 10.1109/TWC.2023.3347537.
|
| [48] |
YING Shanchuan, HUANG Sai, CHANG Shuo, et al. A convolutional and transformer based deep neural network for automatic modulation classification[J]. China Communications, 2023, 20(5): 135–147. doi: 10.23919/JCC.ja.2022-0580.
|
| [49] |
梁坤, 刘战胜. 基于联合残差网络和Bottleneck Transformer的调制格式识别方法[J]. 光通信技术, 2024, 48(3): 13–17. doi: 10.13921/j.cnki.issn1002-5561.2024.03.003.
LIANG Kun and LIU Zhansheng. Modulation format identification method based on joint residual network and Bottleneck Transformers[J]. Optical Communication Technology, 2024, 48(3): 13–17. doi: 10.13921/j.cnki.issn1002-5561.2024.03.003.
|
| [50] |
战权海, 张雄伟, 宋磊, 等. 基于改进Transformer的自动调制识别方法[J]. 数据采集与处理, 2024, 39(6): 1410–1419. doi: 10.16337/j.1004-9037.2024.06.010.
ZHAN Quanhai, ZHANG Xiongwei, SONG Lei, et al. Automatic modulation recognition method based on improved Transformer[J]. Journal of Data Acquisition and Processing, 2024, 39(6): 1410–1419. doi: 10.16337/j.1004-9037.2024.06.010.
|
| [51] |
杨静雅, 齐彦丽, 周一青, 等. CNN-Transformer轻量级智能调制识别算法[J]. 西安电子科技大学学报, 2023, 50(3): 40–49. doi: 10.19665/j.issn1001-2400.2023.03.004.
YANG Jingya, QI Yanli, ZHOU Yiqing, et al. Algorithm for recognition of lightweight intelligent modulation based on the CNN-transformer networks[J]. Journal of Xidian University, 2023, 50(3): 40–49. doi: 10.19665/j.issn1001-2400.2023.03.004.
|
| [52] |
JANG J, PYO J, YOON Y I, et al. Meta-transformer: A meta-learning framework for scalable automatic modulation classification[J]. IEEE Access, 2024, 12: 9267–9276. doi: 10.1109/ACCESS.2024.3352634.
|
| [53] |
ZHENG Shilian, ZHOU Xiaoyu, ZHANG Luxin, et al. Toward next-generation signal intelligence: A hybrid knowledge and data-driven deep learning framework for radio signal classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(3): 564–579. doi: 10.1109/TCCN.2023.3243899.
|
| [54] |
GHASEMZADEH P, HEMPEL M, WANG Honggang, et al. GGCNN: An efficiency-maximizing gated graph convolutional neural network architecture for automatic modulation identification[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6033–6047. doi: 10.1109/TWC.2023.3239311.
|
| [55] |
CLANCY J, MULLINS D, DEEGAN B, et al. Wireless access for V2X communications: Research, challenges and opportunities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 2082–2119. doi: 10.1109/COMST.2024.3384132.
|
| [56] |
NOOR-A-RAHIM M, LIU Zilong, LEE H, et al. 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities[J]. Proceedings of the IEEE, 2022, 110(6): 712–734. doi: 10.1109/JPROC.2022.3173031.
|
| [57] |
KIM S H, MOON C B, KIM J W, et al. A hybrid deep learning model for automatic modulation classification[J]. IEEE Wireless Communications Letters, 2022, 11(2): 313–317. doi: 10.1109/LWC.2021.3126821.
|
| [58] |
REN Bing, TEH K C, AN Hongyang, et al. Automatic modulation recognition of dual-component radar signals using ResSwinT–SwinT network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6405–6418. doi: 10.1109/TAES.2023.3277430.
|
| [59] |
王业恒, 吴彰, 赵永胜, 等. 一种用于可见光通信信号调制格式识别的改进YOLOv5s算法[J]. 光通信技术, 2024, 48(3): 18–22. doi: 10.13921/j.cnki.issn1002-5561.2024.03.004.
WANG Yeheng, WU Zhang, ZHAO Yongsheng, et al. Improved YOLOv5s algorithm for modulation format recognition of visible light communication signal[J]. Optical Communication Technology, 2024, 48(3): 18–22. doi: 10.13921/j.cnki.issn1002-5561.2024.03.004.
|
| [60] |
CHENG En, YAN Jiaquan, SUN Haixin, et al. Research on MPSK modulation classification of underwater acoustic communication signals[C]. IEEE/OES China Ocean Acoustics (COA), Harbin, China, 2016: 1–5. doi: 10.1109/COA.2016.7535788.
|
| [61] |
CHEN Yanghong, XU Xiaodong, and QIN Xiaowei. An open-set modulation recognition scheme with deep representation learning[J]. IEEE Communications Letters, 2023, 27(3): 851–855. doi: 10.1109/LCOMM.2023.3241388.
|
| [62] |
刘高辉, 王壮壮. 基于轻量型网络的单载波信号调制识别[J]. 计算机系统应用, 2023, 32(8): 238–243. doi: 10.15888/j.cnki.csa.009213.
LIU Gaohui and WANG Zhuangzhuang. Modulation recognition of single carrier signal based on lightweight network[J]. Computer Systems & Applications, 2023, 32(8): 238–243. doi: 10.15888/j.cnki.csa.009213.
|
| [63] |
马文轩, 蔡卓燃, 王川, 等. 基于轻量级混合神经网络的边缘设备调制识别方法[J]. 信息对抗技术, 2024, 3(6): 83–94. doi: 10.12399/j.issn.2097-163x.2024.06.008.
MA Wenxuan, CAI Zhuoran, WANG Chuan, et al. Edge devices modulation recognition method based on lightweight hybrid neural network[J]. Information Countermeasure Technology, 2024, 3(6): 83–94. doi: 10.12399/j.issn.2097-163x.2024.06.008.
|
| [64] |
O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016: 213–226. doi: 10.1007/978-3-319-44188-7_16.
|
| [65] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
|
| [66] |
SATHYANARAYANAN V, GERSTOFT P, and EL GAMAL A. RML22: Realistic dataset generation for wireless modulation classification[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7663–7675. doi: 10.1109/TWC.2023.3254490.
|
| [67] |
SNOAP J A, POPESCU D C, and SPOONER C M. Deep-learning-based classifier with custom feature-extraction layers for digitally modulated signals[J]. IEEE Transactions on Broadcasting, 2024, 70(3): 763–773. doi: 10.1109/TBC.2024.3391056.
|
| [68] |
LIU Yabo, LIU Yi, and YANG Cheng. Modulation recognition with graph convolutional network[J]. IEEE Wireless Communications Letters, 2020, 9(5): 624–627. doi: 10.1109/LWC.2019.2963828.
|
| [69] |
GUO Lantu, WANG Yu, LIU Yuchao, et al. Ultralight convolutional neural network for automatic modulation classification in internet of unmanned aerial vehicles[J]. IEEE Internet of Things Journal, 2024, 11(11): 20831–20839. doi: 10.1109/JIOT.2024.3373497.
|
| [70] |
郑庆河, 刘方霖, 余礼苏, 等. 基于改进Kolmogorov-Arnold混合卷积神经网络的调制识别方法[J]. 电子与信息学报, 2025, 47(8): 2584–2597. doi: 10.11999/JEIT250161.
ZHENG Qinghe, LIU Fanglin, YU Lisu, et al. An improved modulation recognition method based on hybrid kolmogorov-arnold convolutional neural network[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2584–2597. doi: 10.11999/JEIT250161.
|
| [71] |
郑庆河, 刘方霖, 余礼苏, 等. 一种结合小波去噪卷积与稀疏Transformer的调制识别方法[J]. 电子与信息学报, 2025, 47(7): 2361–2374. doi: 10.11999/JEIT241159.
ZHENG Qinghe, LIU Fanglin, YU Lisu, et al. A modulation recognition method combining wavelet denoising convolution and sparse Transformer[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2361–2374. doi: 10.11999/JEIT241159.
|
| [72] |
MA Wenxuan, CAI Zhuoran, and WANG Chuan. A transformer and convolution-based learning framework for automatic modulation classification[J]. IEEE Communications Letters, 2024, 28(6): 1392–1396. doi: 10.1109/LCOMM.2024.3380623.
|
| [73] |
LI Juan, JIA Qingning, CUI Xuerong, et al. Automatic modulation recognition of underwater acoustic signals using a two-stream transformer[J]. IEEE Internet of Things Journal, 2024, 11(10): 18839–18851. doi: 10.1109/JIOT.2024.3367852.
|
| [74] |
ZHANG Jiawei, WANG Tiantian, FENG Zhixi, et al. Toward the automatic modulation classification with adaptive wavelet network[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(3): 549–563. doi: 10.1109/TCCN.2023.3252580.
|
| [75] |
陈发堂, 刘泽, 范子健. 基于时空卷积网络的通信信号调制识别[J]. 电讯技术, 2025, 65(4): 518–524. doi: 10.20079/j.issn.1001-893x.240116003.
CHEN Fatang, LIU Ze, and FAN Zijian. Modulation recognition of communication signals based on spatiotemporal convolutional network[J]. Telecommunication Engineering, 2025, 65(4): 518–524. doi: 10.20079/j.issn.1001-893x.240116003.
|
| [76] |
查雄, 彭华, 秦鑫, 等. 基于多端卷积神经网络的调制识别方法[J]. 通信学报, 2019, 40(11): 30–37. doi: 10.11959/j.issn.1000-436x.2019206.
ZHA Xiong, PENG Hua, QIN Xin, et al. Modulation recognition method based on multi-inputs convolution neural network[J]. Journal on Communications, 2019, 40(11): 30–37. doi: 10.11959/j.issn.1000-436x.2019206.
|
| [77] |
DU Mingyang, PAN Jifei, and BI Daping. A contrastive learner for automatic modulation classification[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3575–3589. doi: 10.1109/TWC.2025.3532438.
|
| [78] |
AN T T, ARGYRIOU A, PUSPITASARI A A, et al. Efficient automatic modulation classification for next-generation wireless networks[J]. IEEE Transactions on Green Communications and Networking, 2025. doi: 10.1109/TGCN.2025.3574278. (查阅网上资料,未找到本条文献卷期页码,请确认).
|
| [79] |
KE Yang, ZHANG Wancheng, ZHANG Yan, et al. GIGNet: A graph-in-graph neural network for automatic modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 10058–10062. doi: 10.1109/TVT.2025.3542494.
|
| [80] |
QIN Xiaoqian, JIANG Weiheng, GUI Guan, et al. Multilevel adaptive wavelet decomposition network-based automatic modulation recognition: Exploiting time-frequency multiscale correlations[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(5): 3218–3231. doi: 10.1109/TCCN.2025.3535738.
|
| [81] |
FENG Yuhang, DUAN Ruifeng, LI Shurui, et al. A dual-branch network with feature assistance for automatic modulation recognition[J]. IEEE Signal Processing Letters, 2025, 32: 701–705. doi: 10.1109/LSP.2025.3527901.
|
| [82] |
YI Zengrui, MENG Hua, GAO Lu, et al. Efficient convolutional dual-attention transformer for automatic modulation recognition[J]. Applied Intelligence, 2025, 55(3): 231. doi: 10.1007/s10489-024-06202-6.
|
| [83] |
ZHANG Xingjian, WANG Pengxu, MA Yuan, et al. M2-Net: Multitask-learning-based multiband signal recognition network[J]. IEEE Internet of Things Journal, 2025, 12(11): 16543–16558. doi: 10.1109/JIOT.2025.3535744.
|
| [84] |
ZHANG Ziwei, LI Yunjie, ZHU Mengtao, et al. Self-supervised aligned data augmentation network for imbalanced modulation classification[J]. IEEE Internet of Things Journal, 2025, 12(15): 30862–30878. doi: 10.1109/JIOT.2025.3571448.
|
| [85] |
LI Yike, ZHOU Fuhui, YUAN Lu, et al. A novel knowledge graph driven automatic modulation classification framework for 6G wireless communications[J]. IEEE Transactions on Wireless Communications, 2025, 24(3): 2373–2388. doi: 10.1109/TWC.2024.3520661.
|
| [86] |
FENG Shuai, WANG Yatong, WEN Zhongyi, et al. Fine-grained transductive prototypical network based few-shot signal modulation classification using coarse labels[J]. IEEE Transactions on Cognitive Communications and Networking, 2025. doi: 10.1109/TCCN.2025.3594331. (查阅网上资料,未找到本条文献卷期页码,请确认).
|